Properly posed sets of nodes for multivariate lagrange interpolation in Cs

被引:13
作者
Liang, XZ [1 ]
Lü, CM
Feng, RZ
机构
[1] Jilin Univ, Inst Math, Changchun 130023, Peoples R China
[2] Univ Wisconsin, Ctr Math Sci, Madison, WI 53715 USA
[3] Changchun Coll Taxat, Dept Informat, Changchun 130021, Peoples R China
关键词
Lagrange interpolation; multivariate polynomial; properly posed sets of nodes for interpolation; ideal and variety; algebraic hypersurface;
D O I
10.1137/S0036142999361566
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply techniques from the theory of ideals and varieties in algebraic geometry to study the geometric structure of a properly posed set of nodes (or PPSN, for short) for multivariate Lagrange interpolation along an algebraic hypersurface. We provide a hyperplane-superposition process to construct the PPSN for interpolation along an algebraic hypersurface, and as a result, we offer a clear understanding of the geometric structure of the PPSN for multivariate Lagrange interpolation in C-s.
引用
收藏
页码:587 / 595
页数:9
相关论文
共 10 条
[1]  
Chui C.K., 1987, NONLINEAR CONVEX ANA, P23
[2]   LATTICES ADMITTING UNIQUE LAGRANGE INTERPOLATIONS [J].
CHUNG, KC ;
YAO, TH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :735-743
[3]  
COX D, 1992, IDEALS VARIETIES ALG
[4]   THE LEAST SOLUTION FOR THE POLYNOMIAL INTERPOLATION PROBLEM [J].
DEBOOR, C ;
RON, A .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (03) :347-378
[5]  
GASCA M, 1990, NATO ADV SCI I C-MAT, V307, P215
[6]   ON LAGRANGE AND HERMITE INTERPOLATION IN RK [J].
GASCA, M ;
MAEZTU, JI .
NUMERISCHE MATHEMATIK, 1982, 39 (01) :1-14
[7]  
LIANG XZ, 1989, SCI CHINA SER A, V32, P385
[8]  
LIANG XZ, 1965, THESIS JILIN U CHANG
[9]  
LIANG XZ, 1998, APPROXIMATION THEO 9, V2, P189
[10]  
LIANG XZ, 1979, ACTA SCI NATUR U JIL, V1, P27