Lyapunov exponents and synchronization of cellular automata

被引:0
|
作者
Bagnoli, F [1 ]
Rechtman, R [1 ]
机构
[1] Univ Florence, Dipartimento Matemat Applicata, I-50139 Florence, Italy
来源
COMPLEX SYSTEMS-BOOK | 2001年 / 6卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In these notes we discuss the concept of Lyapunov exponents of cellular automata (CA). We also present a synchronization mechanism for CA. We begin with an introduction to CA, introduce the concept of Boolean derivative and show that any CA has a finite expansion in terms of the Boolean derivatives. The Lyapunov exponents are defined as the rate of exponential growth of the linear part of this expansion using a suitable norm. We then present a simple mechanism for the synchronization of CA and apply it to totalistic one-dimensional CA. The CA with a nonzero synchronization threshold exhibit complex nonperiodic space time patterns and vice versa. This synchronization transition is related to directed percolation. The synchronization threshold is strongly correlated to the maximum Lyapunov exponent and we propose approximate relations between these quantities.
引用
收藏
页码:69 / 103
页数:35
相关论文
共 50 条
  • [31] Synchronization of elementary cellular automata
    Théo Plénet
    Franco Bagnoli
    Samira El Yacoubi
    Clément Raïevsky
    Laurent Lefèvre
    Natural Computing, 2024, 23 : 31 - 40
  • [32] ON THE SYNCHRONIZATION OF COUPLED CHAOTIC SYSTEMS WITH ZERO LYAPUNOV EXPONENTS
    Erjaee, G. H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2008, 32 (A3): : 183 - 190
  • [33] ISING CELLULAR AUTOMATA - UNIVERSALITY AND CRITICAL EXPONENTS
    JAN, N
    JOURNAL DE PHYSIQUE, 1990, 51 (03): : 201 - 204
  • [34] Local transversal Lyapunov exponents for analysis of synchronization of chaotic systems
    Galias, Z
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1999, 27 (06) : 589 - 604
  • [35] Synchronization, Lyapunov Exponents and Stable Manifolds for Random Dynamical Systems
    Scheutzow, Michael
    Vorkastner, Isabell
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 359 - 366
  • [36] Local transversal Lyapunov exponents for analysis of synchronization of chaotic systems
    Galias, Zbigniew
    International Journal of Circuit Theory and Applications, 27 (06): : 589 - 604
  • [37] Synchronization of stochastically coupled cellular automata
    Morelli, LG
    Zanette, DH
    PHYSICAL REVIEW E, 1998, 58 (01): : R8 - R11
  • [38] Synchronization in cellular automata and applications to cryptography
    Mejía, M
    Urías, J
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 176 - 183
  • [39] Synchronization of stochastically coupled cellular automata
    Morelli, Luis G.
    Zanette, Damian H.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (01):
  • [40] CHAOS, SYNCHRONIZATION AND CONTROL IN CELLULAR AUTOMATA
    Bagnoli, Franco
    El Yacoubi, Samira
    Rechtman, Raul
    SUMMER SOLSTICE 2011 INTERNATIONAL CONFERENCE ON DISCRETE MODELS OF COMPLEX SYSTEMS, 2012, 5 (01): : 9 - +