Lyapunov exponents and synchronization of cellular automata

被引:0
|
作者
Bagnoli, F [1 ]
Rechtman, R [1 ]
机构
[1] Univ Florence, Dipartimento Matemat Applicata, I-50139 Florence, Italy
来源
COMPLEX SYSTEMS-BOOK | 2001年 / 6卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In these notes we discuss the concept of Lyapunov exponents of cellular automata (CA). We also present a synchronization mechanism for CA. We begin with an introduction to CA, introduce the concept of Boolean derivative and show that any CA has a finite expansion in terms of the Boolean derivatives. The Lyapunov exponents are defined as the rate of exponential growth of the linear part of this expansion using a suitable norm. We then present a simple mechanism for the synchronization of CA and apply it to totalistic one-dimensional CA. The CA with a nonzero synchronization threshold exhibit complex nonperiodic space time patterns and vice versa. This synchronization transition is related to directed percolation. The synchronization threshold is strongly correlated to the maximum Lyapunov exponent and we propose approximate relations between these quantities.
引用
收藏
页码:69 / 103
页数:35
相关论文
共 50 条
  • [21] Synchronization with positive conditional Lyapunov exponents
    Zhou, CS
    Lai, CH
    PHYSICAL REVIEW E, 1998, 58 (04): : 5188 - 5191
  • [22] Clustering and synchronization with positive Lyapunov exponents
    Grupo de Fis. Matemática, Complexo Interdisciplinar, Universidade de Lisboa, Av. Gama Pinto, 2, P1699 Lisboa Codex, Portugal
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (132-138):
  • [23] Clustering and synchronization with positive Lyapunov exponents
    Mendes, RV
    PHYSICS LETTERS A, 1999, 257 (3-4) : 132 - 138
  • [24] CELLULAR AUTOMATA SYNCHRONIZATION
    ROMANI, F
    INFORMATION SCIENCES, 1976, 10 (04) : 299 - 318
  • [25] DAMAGE SPREADING AND LYAPUNOV EXPONENTS IN CELLULAR AUTOMATA (PHYSICS LETTERS A, VOL 172, PG 34, 1992)
    BAGNOLI, F
    RECHTMAN, R
    RUFFO, S
    PHYSICS LETTERS A, 1993, 173 (06) : 494 - 494
  • [26] Introducing Lyapunov Profiles of Cellular Automata
    Baetens, Jan M.
    Gravner, Janko
    JOURNAL OF CELLULAR AUTOMATA, 2018, 13 (03) : 267 - 286
  • [27] Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents
    Shuai, JW
    Wong, KW
    Cheng, LM
    PHYSICAL REVIEW E, 1997, 56 (02): : 2272 - 2275
  • [28] SUPREME LOCAL LYAPUNOV EXPONENTS AND CHAOTIC IMPULSIVE SYNCHRONIZATION
    Chen, Shengyao
    Xi, Feng
    Liu, Zhong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (10):
  • [29] Synchronization and Control of Cellular Automata
    Bagnoli, Franco
    El Yacoubi, Samira
    Rechtman, Raul
    CELLULAR AUTOMATA, 2010, 6350 : 188 - +
  • [30] Synchronization of elementary cellular automata
    Plenet, Theo
    Bagnoli, Franco
    El Yacoubi, Samira
    Raievsky, Clement
    Lefevre, Laurent
    NATURAL COMPUTING, 2024, 23 (01) : 31 - 40