Vacuum tunneling in gravity

被引:3
作者
Cho, Y. M. [1 ,2 ]
Pak, D. G. [3 ,4 ]
机构
[1] Seoul Natl Univ, Coll Nat Sci, Sch Phys, Seoul 151742, South Korea
[2] Ulsan Natl Inst Sci & Technol, Sch Elect & Comp Engn, Ulsan 689798, South Korea
[3] Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea
[4] Uzbekistan Natl Univ, Inst Appl Phys, Tashkent 100174, Uzbekistan
基金
新加坡国家研究基金会;
关键词
GRAVITATIONAL-FIELD; GAUGE-THEORY;
D O I
10.1088/0264-9381/28/15/155008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Topologically non-trivial vacuum structures in gravity models with Cartan variables (vielbein and contortion) are considered. We study the possibility of vacuum spacetime tunneling in Einstein gravity assuming that the vielbein may play a fundamental role in quantum gravitational phenomena. It has been shown that in the case of RP3 space topology, the tunneling between non-trivial topological vacuums can be realized by means of Eguchi-Hanson gravitational instanton. In the Riemann-Cartan geometric approach to quantum gravity, the vacuum tunneling can be provided by means of contortion quantum fluctuations. We define a double self-duality condition for the contortion and give explicit self-dual configurations which can contribute to vacuum tunneling amplitude.
引用
收藏
页数:16
相关论文
共 30 条
[2]  
[Anonymous], 1953, P 2 JAP NAT C APPL M
[3]   A note on Wandzura-Wilczek relations [J].
Ball, P ;
Lazar, M .
PHYSICS LETTERS B, 2001, 515 (1-2) :131-136
[4]   STRUCTURE OF GAUGE THEORY VACUUM [J].
CALLAN, CG ;
DASHEN, RF ;
GROSS, DJ .
PHYSICS LETTERS B, 1976, 63 (03) :334-340
[5]   SL(2,C) SYMMETRY OF GRAVITATIONAL FIELD DYNAMICAL VARIABLES [J].
CARMELI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (09) :2728-&
[6]   Knot topology of classical QCD vacuum [J].
Cho, Y. M. .
PHYSICS LETTERS B, 2007, 644 (2-3) :208-211
[7]   A MINIMAL MODEL OF LORENTZ GAUGE GRAVITY WITH DYNAMICAL TORSION [J].
Cho, Y. M. ;
Pak, D. G. ;
Park, B. S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (14) :2867-2882
[8]   EINSTEIN LAGRANGIAN AS TRANSLATIONAL YANG-MILLS LAGRANGIAN [J].
CHO, YM .
PHYSICAL REVIEW D, 1976, 14 (10) :2521-2525
[9]   GAUGE THEORY OF POINCARE SYMMETRY [J].
CHO, YM .
PHYSICAL REVIEW D, 1976, 14 (12) :3335-3340
[10]   VACUUM TUNNELING IN SPONTANEOUSLY BROKEN GAUGE THEORY [J].
CHO, YM .
PHYSICS LETTERS B, 1979, 81 (01) :25-28