Hyperelastic curves in 3-dimensional lightlike cone

被引:0
作者
Kagizman, Sumeyra Tugce [1 ]
Yucesan, Ahmet [2 ]
机构
[1] Akoren Ali Asik Multi Program Anatolian High Sch, Konya, Turkey
[2] Suleyman Demirel Univ, Dept Math, Isparta, Turkey
关键词
Hyperelastic curves; Euler-Lagrange equations; lightlike cone; ELASTIC CURVES; CURVATURE;
D O I
10.3906/mat-2102-102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hyperelastic curves known as a generalization of elastic curves in 3-dimensional lightlike cone which is a degenerate hypersurface in Minkowski 4-space as critical points of the cone curvature energy functional constructed with the r-th power of the cone curvature depending on the given boundary conditions for the natural number r >= 2. We derive the Euler-Lagrange equations for the critical points of this functional that is namely the hyperelastic curves and solve completely the Euler-Lagrange equations by quadratures. Then, we construct Killing vector fields along the hyperelastic curves. Lastly, we give explicitly the hyperelastic curves by integral according to the selected cylindrical coordinate systems in 3- dimensional lightlike cone using these Killing vector fields.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 28 条
[1]   Closed free hyperelastic curves in the hyperbolic plane and Chen-Willmore rotational hypersurfaces [J].
Arroyo, J ;
Garay, OJ ;
Barros, M .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :171-187
[2]  
Arroyo J, 2004, SOOCHOW J MATH, V30, P269
[3]  
Arroyo J, 2003, P 12 FALL WORKSH GEO, P1
[4]   Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces [J].
Barros, M ;
Ferrandez, A ;
Lucas, P ;
Merono, MA .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) :45-66
[5]  
Brunnett G., 1994, Advances in Computational Mathematics, V2, P23
[6]  
Brunnett G., 1992, Mathematical methods in computer aided geometric design, VII, P43
[7]   RELATIVISTIC ELASTICA [J].
DERELI, T ;
HARTLEY, DH ;
ONDER, M ;
TUCKER, RW .
PHYSICS LETTERS B, 1990, 252 (04) :601-604
[8]  
HUANG Rong-pei, 2011, [数学季刊, Chinese Quarterly Journal of Mathematics], V26, P311
[9]   Generalized elastic curves in the Lorentz flat space L 4 [J].
Huang, Rong-pei ;
Shang, Dong-hu .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (09) :1193-1200
[10]   Generalized elastica on 2-dimensional de Sitter space S12 [J].
Huang, Rongpei ;
Yu, Junyan .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (04)