Simultaneous imaging of sound propagations and spatial distribution of acoustic frequencies

被引:4
作者
Hashimoto, Sota [1 ]
Takase, Yuki [1 ]
Inoue, Tomoyoshi [1 ,2 ]
Nishio, Kenzo [3 ]
Xia, Peng [4 ]
Rajput, Sudheesh K. [5 ]
Matoba, Osamu [5 ]
Awatsuji, Yasuhiro [6 ]
机构
[1] Kyoto Inst Technol, Grad Sch Sci & Technol, Sakyo Ku, Matsugasaki Goshokaido Cho, Kyoto 6068585, Japan
[2] Japan Soc Promot Sci, Chiyoda Ku, Kojimachi Business Ctr Bldg,5-3-1 Kojimachi, Tokyo 1020083, Japan
[3] Kyoto Inst Technol, Adv Technol Ctr, Sakyo Ku, Matsugasaki Goshokaido Cho, Kyoto 6068585, Japan
[4] Nabbnal Inst Adv Ind Sci & Technol AIST, Cent 2,1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[5] Kobe Univ, Org Adv & Integrated Res, Nada Ku, Rokkodai 1-1, Kobe, Hyogo 657850, Japan
[6] Kyoto Inst Technol, Fac Elect Engn & Elect, Sakyo Ku, Matsugasaki Goshokaido Cho, Kyoto 6068585, Japan
基金
日本学术振兴会;
关键词
FIELD; FLOW;
D O I
10.1364/AO.444760
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a simultaneous imaging technique of both sound propagations and spatial distribution of acoustic frequencies. We experimentally demonstrated the proposed technique for the acoustic waves of frequencies 39,500 and 40,500 Hz, which have close sound pressure. The sounds were recorded at the framerate of 100,000 fps by parallel phase-shifting digital holography. To obtain the distribution of the acoustic frequencies, the short-time Fourier transform analysis was applied. The simultaneous imaging was carried out by assigning the frequencies and the pixel values of the phase-difference images to the components of HSL color space. The images obtained by the proposed technique represent the frequencies with the hue in addition to the sound propagations with the luminance. We succeeded in imaging the spatiotemporal evolution of the spatial frequencies of the sounds. (C) 2022 Optica Publishing Group
引用
收藏
页码:B246 / B254
页数:9
相关论文
共 28 条
  • [21] Measurement of the Local Sound Pressure on a Bias-Flow Liner Using High-Speed Holography and Tomographic Reconstruction
    Ruiz, Andres E. Ramos
    Guertler, Johannes
    Kuschmierz, Robert
    Czarske, Juergen W.
    [J]. IEEE ACCESS, 2019, 7 (153466-153474): : 153466 - 153474
  • [22] Real-time digital holographic microscopy using the graphic processing unit
    Shimobaba, Tomoyoshi
    Sato, Yoshikuni
    Miura, Junya
    Takenouchi, Mai
    Ito, Tomoyoshi
    [J]. OPTICS EXPRESS, 2008, 16 (16): : 11776 - 11781
  • [23] Laser Doppler velocimetry for joint measurements of acoustic and mean flow velocities: LMS-based algorithm and CRB calculation
    Simon, Laurent
    Richoux, Olivier
    Degroot, Anne
    Lionet, Louis
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (07) : 1455 - 1464
  • [24] Tahara T., 2011, INT WORKSHOP HOLOGRA, P57
  • [25] High-speed imaging of the sound field by parallel phase-shifting digital holography
    Takase, Yuki
    Shimizu, Kazuki
    Mochida, Shogo
    Inoue, Tomoyoshi
    Nishio, Kenzo
    Rajput, Sudheesh K.
    Matoba, Osamu
    Xia, Peng
    Awatsuji, Yasuhiro
    [J]. APPLIED OPTICS, 2021, 60 (04) : A179 - A187
  • [26] A Non-Contact Fault Diagnosis Method for Rolling Bearings Based on Acoustic Imaging and Convolutional Neural Networks
    Wang, Ran
    Liu, Fengkai
    Hou, Fatao
    Jiang, Weikang
    Hou, Qilin
    Yu, Longjing
    [J]. IEEE ACCESS, 2020, 8 : 132761 - 132774
  • [27] Sampling the sound field in auditoria using large natural-scale array measurements
    Witew, Ingo B.
    Vorlaender, Michael
    Xiang, Ning
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 141 (03) : EL300 - EL306
  • [28] Phase-shifting digital holography
    Yamaguchi, I
    Zhang, T
    [J]. OPTICS LETTERS, 1997, 22 (16) : 1268 - 1270