High-frequency rectification via chiral Bloch electrons

被引:168
作者
Isobe, Hiroki [1 ]
Xu, Su-Yang [1 ]
Fu, Liang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
GRAPHENE; TRANSPORT; SILICON;
D O I
10.1126/sciadv.aay2497
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rectification is a process that converts electromagnetic fields into a direct current. Such a process underlies a wide range of technologies such as wireless communication, wireless charging, energy harvesting, and infrared detection. Existing rectifiers are mostly based on semiconductor diodes, with limited applicability to small-voltage or high-frequency inputs. Here, we present an alternative approach to current rectification that uses the intrinsic electronic properties of quantum crystals without using semiconductor junctions. We identify a previously unknown mechanism for rectification from skew scattering due to the inherent chirality of itinerant electrons in time-reversal invariant but inversion-breaking materials. Our calculations reveal large, tunable rectification effects in graphene multi-layers and transition metal dichalcogenides. Our work demonstrates the possibility of realizing high-frequency rectifiers by rational material design and quantum wave function engineering.
引用
收藏
页数:8
相关论文
共 62 条
[31]   Landau-level degeneracy and quantum hall effect in a graphite bilayer [J].
McCann, E ;
Fal'ko, VI .
PHYSICAL REVIEW LETTERS, 2006, 96 (08) :1-4
[32]   The electronic properties of bilayer graphene [J].
McCann, Edward ;
Koshino, Mikito .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (05)
[33]   Confinement-Induced Berry Phase and Helicity-Dependent Photocurrents [J].
Moore, J. E. ;
Orenstein, J. .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)
[34]   Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals [J].
Morimoto, Takahiro ;
Zhong, Shudan ;
Orenstein, Joseph ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2016, 94 (24)
[35]   Electron-hole asymmetry and energy gaps in bilayer graphene [J].
Mucha-Kruczynski, M. ;
McCann, E. ;
Fal'ko, Vladimir I. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (03)
[36]   Anomalous Hall effect [J].
Nagaosa, Naoto ;
Sinova, Jairo ;
Onoda, Shigeki ;
MacDonald, A. H. ;
Ong, N. P. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1539-1592
[37]   Room-Temperature High-Frequency Transport of Dirac Fermions in Epitaxially Grown Sb2Te3- and Bi2Te3-Based Topological Insulators [J].
Olbrich, P. ;
Golub, L. E. ;
Herrmann, T. ;
Danilov, S. N. ;
Plank, H. ;
Bel'kov, V. V. ;
Mussler, G. ;
Weyrich, Ch. ;
Schneider, C. M. ;
Kampmeier, J. ;
Gruetzmacher, D. ;
Plucinski, L. ;
Eschbach, M. ;
Ganichev, S. D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[38]   New generation of massless Dirac fermions in graphene under external periodic potentials [J].
Park, Cheol-Hwan ;
Yang, Li ;
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[39]   Quantum spin Hall effect in two-dimensional transition metal dichalcogenides [J].
Qian, Xiaofeng ;
Liu, Junwei ;
Fu, Liang ;
Li, Ju .
SCIENCE, 2014, 346 (6215) :1344-1347
[40]   Nonlinear anomalous photocurrents in Weyl semimetals [J].
Rostami, Habib ;
Polini, Marco .
PHYSICAL REVIEW B, 2018, 97 (19)