A direct proof of the Brunn-Minkowski inequality in nilpotent Lie groups

被引:0
作者
Pozuelo, Julian [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Geometria & Topol, Granada 18071, Spain
基金
欧盟地平线“2020”;
关键词
Brunn-Minkowski inequality; Nilpotent Lie groups; Nilpotent Lie algebras; BRASCAMP;
D O I
10.1016/j.jmaa.2022.126427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to give a direct proof of the multiplicative Brunn-Minkowski inequality in nilpotent Lie groups based on Hadwiger-Ohmann's one of the classical Brunn-Minkowski inequality in Euclidean space. (C) 2022 The Author. Published by Elsevier Inc.
引用
收藏
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 2002, PROGR MATH
[2]   Geometric inequalities on Heisenberg groups [J].
Balogh, Zoltan M. ;
Kristaly, Alexandru ;
Sipos, Kinga .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[3]   Sub-Riemannian interpolation inequalities [J].
Barilari, Davide ;
Rizzi, Luca .
INVENTIONES MATHEMATICAE, 2019, 215 (03) :977-1038
[4]  
Bobkov S.G, 2011, PROBLEMS MATH ANAL, P2
[5]   From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities [J].
Bobkov, SG ;
Ledoux, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1028-1052
[6]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[7]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[8]  
Corwin L., 1990, Cambridge Studies in Advanced Mathematics
[9]  
Figalli A, 2010, B AM MATH SOC, V47, P723, DOI DOI 10.1090/S0273-0979-10-01285-1
[10]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405