Square Laplacian perturbed by inverse fourth-power potential. I Self-adjointness (real case)

被引:4
作者
Okazawa, Noboru [1 ]
Tamura, Hiroshi [1 ]
Yokota, Tomomi [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
关键词
KATO CLASS POTENTIALS; OPERATORS;
D O I
10.1017/S0308210509001577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The self-adjointness of Delta(2) + kappa vertical bar x vertical bar(-4) (kappa > kappa(0) = kappa(0)(N)) in L-2(R-N) is established as an application of the perturbation theorem in terms of Re(Au, B(epsilon)u), u is an element of D(A), for two non-negative self-adjoint operators A, B in a Hilbert space, where the family {B-epsilon}(epsilon>0) is the Yosida approximation of B. A key to the proof lies in a new inequality for the functions nu is an element of L-2(R-N) with vertical bar x vertical bar(2) Delta v is an element of L-2(R-N) derived by using two real parameters.
引用
收藏
页码:409 / 416
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1987, OXFORD MATH MONOGRAP
[4]   Kato class potentials for higher order elliptic operators [J].
Davies, EB ;
Hinz, AM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :669-678
[5]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389
[6]  
NGUYEN DX, 1982, P R SOC EDINB A, V93, P161
[8]  
Okazawa N., 1996, JAPAN J MATH, V22, P199
[9]  
OZAWA T, 2009, COMMUN CONTEMP MATH, V11, P1
[10]  
TAMURA H, 2010, SUT J MATH, V46, P255