Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat

被引:64
作者
Liu, Hao [1 ]
Yang, Ying [1 ,2 ]
Liu, Dandan [3 ]
Wang, Xiaoyu [1 ,4 ]
Zhang, Linsheng [1 ]
机构
[1] Northwest A&F Univ, Coll Life Sci, State Key Lab Crop Stress Biol Arid Areas, Yangling 712100, Shaanxi, Peoples R China
[2] Weinan Vocat & Tech Coll, Coll Nursing, Weinan 714000, Peoples R China
[3] Yunnan Univ, Sch Agr, Kunming 650000, Yunnan, Peoples R China
[4] Ocean Univ China, Inst Evolut & Marine Biodivers, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
Wheat; Dehydrin; Drought stress; bHLH transcription factor; Regulation mechanism; ABIOTIC STRESS; ARABIDOPSIS; BHLH; RESISTANCE; PROTEINS;
D O I
10.1186/s12870-020-02474-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background As functional proteins, dehydrins are found in many maturing seeds and vegetable tissues under adverse environmental conditions. However, the regulation of dehydrin expression remains unclear. Results In this study, a novel drought stress-related bHLH transcription factor, TabHLH49, was isolated from a wheat cDNA library treated with the drought and cold stress by using yeast one-hybrid system. TabHLH49 protein possesses a typical conserved bHLH domain and is a Myc-type bHLH transcription factor. TabHLH49 was detected in the nucleus of tobacco epidermal cells, and the amino acid sequences at the C-terminus (amino acids 323-362) is necessary for its transactivation activity. Real-time PCR analyses revealed the tissue-specific expression and drought stress-responsive expression of TabHLH49 in wheat. In addition, the verification in Y1H and electrophoretic mobility shift assays illustrated that TabHLH49 protein can bind and interact with the promoter of the wheat WZY2 dehydrin. Furthermore, the dual-luciferase assays showed that TabHLH49 can positively regulate the expression of WZY2 dehydrin. The transient expression and BSMV-mediated gene silencing of TabHLH49 also showed that TabHLH49 positively regulates the expression of WZY2 dehydrin and improves drought stress resistance in wheat. Conclusions These results provide direct evidences that TabHLH49 positively regulates expression level of dehydrin WZY2 gene and improves drought tolerance of wheat.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]  
[Anonymous], 2018, CLUSTER COMPUTING
[3]   Positional dependence, cliques, and predictive motifs in the bHLH protein domain [J].
Atchley, WR ;
Terhalle, W ;
Dress, A .
JOURNAL OF MOLECULAR EVOLUTION, 1999, 48 (05) :501-516
[4]   Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis [J].
Babitha, K. C. ;
Ramu, S. V. ;
Pruthvi, V. ;
Mahesh, Patil ;
Nataraja, Karaba N. ;
Udayakumar, M. .
TRANSGENIC RESEARCH, 2013, 22 (02) :327-341
[5]   The enigmatic LEA proteins and other hydrophilins [J].
Battaglia, Marina ;
Olvera-Carrillo, Yadira ;
Garciarrubio, Alejandro ;
Campos, Francisco ;
Covarrubias, Alejandra A. .
PLANT PHYSIOLOGY, 2008, 148 (01) :6-24
[6]   A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco [J].
Chen, Kaili ;
Du, Lingjuan ;
Liu, Hongli ;
Liu, Yali .
BMC PLANT BIOLOGY, 2019, 19 (01)
[7]   Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit [J].
Garay-Arroyo, A ;
Colmenero-Flores, JM ;
Garciarrubio, A ;
Covarrubias, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (08) :5668-5674
[8]  
Garg VK, 2016, BIOINFORMATION, V12, P74, DOI 10.6026/97320630012074
[9]   Global identification, structural analysis and expression characterization of bHLH transcription factors in wheat [J].
Guo, Xiao-Jiang ;
Wang, Ji-Rui .
BMC PLANT BIOLOGY, 2017, 17
[10]  
Heisler MGB, 2001, DEVELOPMENT, V128, P1089