Log-penalized linear regression

被引:0
作者
Sweetkind-Singer, JA [1 ]
机构
[1] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
来源
2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regularization penalties are commonly used in linear regression to reduce overfitting [1]. We introduce a log regularization penalty, motivated by a minimum-description-length (MDL) perspective [2] and from ideas in algorithmic complexity [3], and compare it to the more commonly used penalties known as ridge regression and the lasso [1].
引用
收藏
页码:286 / 286
页数:1
相关论文
共 50 条
  • [41] Estimator of prediction error based on approximate message passing for penalized linear regression
    Sakata, Ayaka
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [42] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    STAT, 2021, 10 (01):
  • [43] SCAD-PENALIZED REGRESSION IN HIGH-DIMENSIONAL PARTIALLY LINEAR MODELS
    Xie, Huiliang
    Huang, Jian
    ANNALS OF STATISTICS, 2009, 37 (02) : 673 - 696
  • [44] A globally convergent algorithm for lasso-penalized mixture of linear regression models
    Lloyd-Jones, Luke R.
    Nguyen, Hien D.
    McLachlan, Geoffrey J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 119 : 19 - 38
  • [45] The L1 penalized LAD estimator for high dimensional linear regression
    Wang, Lie
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 : 135 - 151
  • [46] Penalized likelihood regression for generalized linear models with non-quadratic penalties
    Anestis Antoniadis
    Irène Gijbels
    Mila Nikolova
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 585 - 615
  • [47] Application of penalized linear regression and ensemble methods for drought forecasting in Northeast China
    Zeng Li
    Taotao Chen
    Qi Wu
    Guimin Xia
    Daocai Chi
    Meteorology and Atmospheric Physics, 2020, 132 : 113 - 130
  • [48] Penalized likelihood regression for generalized linear models with non-quadratic penalties
    Antoniadis, Anestis
    Gijbels, Irene
    Nikolova, Mila
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (03) : 585 - 615
  • [49] Extended ADMM for general penalized quantile regression with linear constraints in big data
    Liu, Yongxin
    Zeng, Peng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4268 - 4289
  • [50] Variable selection via generalized SELO-penalized linear regression models
    Yue-yong Shi
    Yong-xiu Cao
    Ji-chang Yu
    Yu-ling Jiao
    Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 145 - 162