Log-penalized linear regression

被引:0
作者
Sweetkind-Singer, JA [1 ]
机构
[1] Stanford Univ, Elect Engn Dept, Stanford, CA 94305 USA
来源
2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regularization penalties are commonly used in linear regression to reduce overfitting [1]. We introduce a log regularization penalty, motivated by a minimum-description-length (MDL) perspective [2] and from ideas in algorithmic complexity [3], and compare it to the more commonly used penalties known as ridge regression and the lasso [1].
引用
收藏
页码:286 / 286
页数:1
相关论文
共 50 条
  • [31] INTERACTION TERMS IN POISSON AND LOG LINEAR REGRESSION MODELS
    Shang, Shengwu
    Nesson, Erik
    Fan, Maoyong
    BULLETIN OF ECONOMIC RESEARCH, 2018, 70 (01) : E89 - E96
  • [32] A new bounded log-linear regression model
    HaiYing Wang
    Nancy Flournoy
    Eloi Kpamegan
    Metrika, 2014, 77 : 695 - 720
  • [33] Penalized isotonic regression
    Wu, Jiwen
    Meyer, Mary C.
    Opsomer, Jean D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 161 : 12 - 24
  • [34] Penalized polygram regression
    Jae-Hwan Jhong
    Kwan-Young Bak
    Ja-Yong Koo
    Journal of the Korean Statistical Society, 2022, 51 : 1161 - 1192
  • [35] Robust outlier removal using penalized linear regression in multiview geometry
    Zhou, Guoqing
    Wang, Qing
    Xiao, Zhaolin
    NEUROCOMPUTING, 2017, 267 : 455 - 465
  • [36] Penalized Functional Regression
    Goldsmith, Jeff
    Bobb, Jennifer
    Crainiceanu, Ciprian M.
    Caffo, Brian
    Reich, Daniel
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 830 - 851
  • [37] Penalized polygram regression
    Jhong, Jae-Hwan
    Bak, Kwan-Young
    Koo, Ja-Yong
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (04) : 1161 - 1192
  • [38] HELLINGER DISTANCE AS A PENALIZED LOG LIKELIHOOD
    HARRIS, IR
    BASU, A
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) : 1097 - 1113
  • [39] Variable selection via generalized SELO-penalized linear regression models
    SHI Yue-yong
    CAO Yong-xiu
    YU Ji-chang
    JIAO Yu-ling
    Applied Mathematics:A Journal of Chinese Universities, 2018, 33 (02) : 145 - 162
  • [40] Penalized Lq-likelihood estimators and variable selection in linear regression models
    Hu, Hongchang
    Zeng, Zhen
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (17) : 5957 - 5970