Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge

被引:218
作者
Campello, Victor M. [1 ]
Gkontra, Polyxeni [1 ]
Izquierdo, Cristian [1 ]
Martin-Isla, Carlos [1 ]
Sojoudi, Alireza [2 ]
Full, Peter M. [3 ]
Maier-Hein, Klaus [3 ]
Zhang, Yao [4 ]
He, Zhiqiang [5 ]
Ma, Jun [6 ]
Parreno, Mario [7 ]
Albiol, Alberto [8 ]
Kong, Fanwei [9 ]
Shadden, Shawn C. [9 ]
Acero, Jorge Corral [10 ]
Sundaresan, Vaanathi [11 ]
Saber, Mina [12 ]
Elattar, Mustafa [12 ,13 ]
Li, Hongwei [14 ,15 ]
Menze, Bjoern [14 ]
Khader, Firas [16 ]
Haarburger, Christoph [16 ]
Scannell, Cian M. [17 ]
Veta, Mitko [18 ]
Carscadden, Adam [19 ,20 ]
Punithakumar, Kumaradevan [19 ,20 ]
Liu, Xiao [21 ]
Tsaftaris, Sotirios A. [21 ,22 ]
Huang, Xiaoqiong [23 ,24 ]
Yang, Xin [23 ,24 ]
Li, Lei [25 ]
Zhuang, Xiahai [26 ]
Vilades, David [27 ]
Descalzo, Martin L. [27 ]
Guala, Andrea [28 ]
La Mura, Lucia [29 ]
Friedrich, Matthias G. [30 ]
Garg, Ria [30 ]
Lebel, Julie [30 ]
Henriques, Filipe [30 ]
Karakas, Mahir [31 ,32 ]
Cavus, Ersin [31 ,32 ]
Petersen, Steffen E. [33 ,34 ]
Escalera, Sergio [35 ,36 ]
Segui, Santi [35 ]
Rodriguez-Palomares, Jose F. [28 ]
Lekadir, Karim [1 ]
机构
[1] Univ Barcelona, Artificial Intelligence Med Lab BCN AIM, Dept Matemat & Informat, Barcelona 08007, Spain
[2] Circle Cardiovasc Imaging Pvt Ltd, Calgary, AB T2P 3T6, Canada
[3] German Canc Res Ctr, Div Med Image Comp, D-69120 Heidelberg, Germany
[4] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[5] Lenovo Ltd, Beijing 100085, Peoples R China
[6] Nanjing Univ Sci & Technol, Dept Math, Nanjing 210094, Peoples R China
[7] Univ Politecn Valencia, PRHLT Res Ctr, Valencia 46022, Spain
[8] Univ Politecn Valencia, iTeam Res Inst, Valencia 46022, Spain
[9] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[10] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford OX3 7DQ, England
[11] Univ Oxford, Ctr Funct MRI Brain, Nuffield Dept Clin Neurosci, Oxford OX3 9DU, England
[12] Intixel Co SAE, Res & Dev Div, Cairo 11585, Egypt
[13] Nile Univ, Med Imaging & Image Proc Grp, Giza 16453, Egypt
[14] Tech Univ Munich, Dept Comp Sci, D-80333 Munich, Germany
[15] Orbem GmbH, D-85748 Garching, Germany
[16] ARISTRA GmbH, D-10439 Berlin, Germany
[17] Kings Coll London, Sch Biomed Engn & Imaging Sci, London WC2R 2LS, England
[18] Eindhoven Univ Technol, Dept Biomed Engn, NL-5612 Eindhoven, Netherlands
[19] Univ Alberta, Dept Radiol & Diagnost Imaging, Edmonton, AB T6G 2R3, Canada
[20] Mazankowski Alberta Heart Inst, Servier Virtual Cardiac Ctr, Edmonton, AB T6G 2B7, Canada
[21] Univ Edinburgh, Sch Engn, Edinburgh EH9 3FB, Midlothian, Scotland
[22] Alan Turing Inst, London NW1 2DB, England
[23] Shenzhen Univ, Sch Biomed Engn, Shenzhen 518037, Peoples R China
[24] Shenzhen Univ, Med UltraSound Image Comp MUSIC Lab, Shenzhen 518037, Peoples R China
[25] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
[26] Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R China
[27] Univ Autonoma Barcelona, Cardiol Serv, Cardiac Imaging Unit, Hosp Santa Creu & St Pau, Barcelona, Spain
[28] Univ Autonoma Barcelona, Hosp Univ Vall dHebron, Vall dHebron Inst Recerca, CIBERCV,Dept Cardiol, Barcelona 08193, Spain
[29] Univ Naples Federico II, Dept Adv Biomed Sci, I-80138 Naples, Italy
[30] McGill Univ, Dept Med & Diagnost Radiol, Montreal, PQ H3A 0G4, Canada
[31] Univ Heart & Vasc Ctr Hamburg, Dept Cardiol, D-20251 Hamburg, Germany
[32] German Ctr Cardiovasc Res DZHK, D-10785 Berlin, Germany
[33] Barts Hlth NHS Trust, Barts Heart Ctr, London E1 1BB, England
[34] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, London E1 4NS, England
[35] Univ Barcelona, Dept Matemat & Informat, Barcelona 08007, Spain
[36] Univ Autonoma Barcelona, Comp Vis Ctr, Barcelona 08193, Spain
基金
英国工程与自然科学研究理事会;
关键词
Image segmentation; Heart; Training; Hospitals; Deep learning; Biomedical engineering; Protocols; Cardiovascular magnetic resonance; image segmentation; deep learning; generalizability; data augmentation; domain adaption; public dataset; DIAGNOSIS; MRI;
D O I
10.1109/TMI.2021.3090082
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.
引用
收藏
页码:3543 / 3554
页数:12
相关论文
共 38 条
  • [1] Automatic initialization and quality control of large-scale cardiac MRI segmentations
    Alba, Xenia
    Lekadir, Karim
    Pereanez, Marco
    Medrano-Gracia, Pau
    Young, Alistair A.
    Frangi, Alejandro F.
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 43 : 129 - 141
  • [2] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    [J]. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [3] Multi-atlas segmentation with augmented features for cardiac MR images
    Bai, Wenjia
    Shi, Wenzhe
    Ledig, Christian
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 19 (01) : 98 - 109
  • [4] Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
    Bernard, Olivier
    Lalande, Alain
    Zotti, Clement
    Cervenansky, Frederick
    Yang, Xin
    Heng, Pheng-Ann
    Cetin, Irem
    Lekadir, Karim
    Camara, Oscar
    Gonzalez Ballester, Miguel Angel
    Sanroma, Gerard
    Napel, Sandy
    Petersen, Steffen
    Tziritas, Georgios
    Grinias, Elias
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    Rohe, Marc-Michel
    Pennec, Xavier
    Sermesant, Maxime
    Isensee, Fabian
    Jaeger, Paul
    Maier-Hein, Klaus H.
    Full, Peter M.
    Wolf, Ivo
    Engelhardt, Sandy
    Baumgartner, Christian F.
    Koch, Lisa M.
    Wolterink, Jelmer M.
    Isgum, Ivana
    Jang, Yeonggul
    Hong, Yoonmi
    Patravali, Jay
    Jain, Shubham
    Humbert, Olivier
    Jodoin, Pierre-Marc
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2514 - 2525
  • [5] Carscadden Adam, 2021, Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges 11th International Workshop (STACOM 2020). Held in Conjunction with MICCAI 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12592), P250, DOI 10.1007/978-3-030-68107-4_25
  • [6] Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank
    Cetin, Irem
    Raisi-Estabragh, Zahra
    Petersen, Steffen E.
    Napel, Sandy
    Piechnik, Stefan K.
    Neubauer, Stefan
    Gonzalez Ballester, Miguel A.
    Camara, Oscar
    Lekadir, Karim
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [7] A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI
    Cetin, Irem
    Sanroma, Gerard
    Petersen, Steffen E.
    Napel, Sandy
    Camara, Oscar
    Gonzalez Ballester, Miguel-Angel
    Lekadir, Karim
    [J]. STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 82 - 90
  • [8] Disentangled representation learning in cardiac image analysis
    Chartsias, Agisilaos
    Joyce, Thomas
    Papanastasiou, Giorgos
    Semple, Scott
    Williams, Michelle
    Newby, David E.
    Dharmakumar, Rohan
    Tsaftaris, Sotirios A.
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 58
  • [9] Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images
    Chen, Chen
    Bai, Wenjia
    Davies, Rhodri H.
    Bhuva, Anish N.
    Manisty, Charlotte H.
    Augusto, Joao B.
    Moon, James C.
    Aung, Nay
    Lee, Aaron M.
    Sanghvi, Mihir M.
    Fung, Kenneth
    Paiva, Jose Miguel
    Petersen, Steffen E.
    Lukaschuk, Elena
    Piechnik, Stefan K.
    Neubauer, Stefan
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [10] Deep Learning for Cardiac Image Segmentation: A Review
    Chen, Chen
    Qin, Chen
    Qiu, Huaqi
    Tarroni, Giacomo
    Duan, Jinming
    Bai, Wenjia
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7