Drugging KRAS: current perspectives and state-of-art review

被引:90
作者
Parikh, Kaushal [1 ]
Banna, Giuseppe [2 ]
Liu, Stephen, V [3 ]
Friedlaender, Alex [4 ]
Desai, Aakash [1 ]
Subbiah, Vivek [5 ]
Addeo, Alfredo [6 ]
机构
[1] Mayo Clin, Rochester, MN USA
[2] Portsmouth Univ Hosp NHS Trust, Portsmouth, Hants, England
[3] Georgetown Univ, Washington, DC USA
[4] Clin Gen Beaulieu, Geneva, Switzerland
[5] MD Anderson Canc Ctr, Houston, TX USA
[6] Univ Hosp Geneva, Geneva, Switzerland
关键词
CELL LUNG-CANCER; FARNESYL-PROTEIN TRANSFERASE; COOCCURRING GENOMIC ALTERATIONS; GUANINE-NUCLEOTIDE EXCHANGE; SELUMETINIB PLUS DOCETAXEL; PHASE-I TRIAL; K-RAS; DOSE-ESCALATION; SOLID TUMORS; OPEN-LABEL;
D O I
10.1186/s13045-022-01375-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
After decades of efforts, we have recently made progress into targeting KRAS mutations in several malignancies. Known as the 'holy grail' of targeted cancer therapies, KRAS is the most frequently mutated oncogene in human malignancies. Under normal conditions, KRAS shuttles between the GDP-bound 'off' state and the GTP-bound 'on' state. Mutant KRAS is constitutively activated and leads to persistent downstream signaling and oncogenesis. In 2013, improved understanding of KRAS biology and newer drug designing technologies led to the crucial discovery of a cysteine drug-binding pocket in GDP-bound mutant KRAS G12C protein. Covalent inhibitors that block mutant KRAS G12C were successfully developed and sotorasib was the first KRAS G12C inhibitor to be approved, with several more in the pipeline. Simultaneously, effects of KRAS mutations on tumour microenvironment were also discovered, partly owing to the universal use of immune checkpoint inhibitors. In this review, we discuss the discovery, biology, and function of KRAS in human malignancies. We also discuss the relationship between KRAS mutations and the tumour microenvironment, and therapeutic strategies to target KRAS. Finally, we review the current clinical evidence and ongoing clinical trials of novel agents targeting KRAS and shine light on resistance pathways known so far.
引用
收藏
页数:22
相关论文
共 184 条
[1]   Epithelial-to-Mesenchymal Transition is a Cause of Both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer [J].
Adachi, Yuta ;
Ito, Kentaro ;
Hayashi, Yuko ;
Kimura, Ryo ;
Tan, Tuan Zea ;
Yamaguchi, Rui ;
Ebi, Hiromichi .
CLINICAL CANCER RESEARCH, 2020, 26 (22) :5962-5973
[2]   Phase II study of the farnesyl transferase inhibitor r115777 in patients with advanced non-small-cell lung cancer [J].
Adjei, AA ;
Mauer, A ;
Bruzek, L ;
Marks, RS ;
Hillman, S ;
Geyer, S ;
Hanson, LJ ;
Wright, JJ ;
Erlichman, C ;
Kaufmann, SH ;
Vokes, EE .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (09) :1760-1766
[3]  
Adjei AA, 2000, CANCER RES, V60, P1871
[4]  
Adjei AA, 2003, CLIN CANCER RES, V9, P2520
[5]   EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer [J].
Amodio, Vito ;
Yaeger, Rona ;
Arcella, Pamela ;
Cancelliere, Carlotta ;
Lamba, Simona ;
Lorenzato, Annalisa ;
Arena, Sabrina ;
Montone, Monica ;
Mussolin, Benedetta ;
Bian, Yu ;
Whaley, Adele ;
Pinnelli, Marika ;
Murciano-Goroff, Yonina R. ;
Vakiani, Efsevia ;
Valeri, Nicola ;
Liao, Wei-Li ;
Bhalkikar, Anuja ;
Thyparambil, Sheeno ;
Zhao, Hui-Yong ;
de Stanchina, Elisa ;
Marsoni, Silvia ;
Siena, Salvatore ;
Bertotti, Andrea ;
Trusolino, Livio ;
Li, Bob T. ;
Rosen, Neal ;
Di Nicolantonio, Federica ;
Bardelli, Alberto ;
Misale, Sandra .
CANCER DISCOVERY, 2020, 10 (08) :1129-1139
[6]  
[Anonymous], 2021, About Us
[7]   Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer [J].
Arbour, Kathryn C. ;
Jordan, Emmett ;
Kim, Hyunjae Ryan ;
Dienstag, Jordan ;
Yu, Helena A. ;
Sanchez-Vega, Francisco ;
Lito, Piro ;
Berger, Michael ;
Solit, David B. ;
Hellmann, Matthew ;
Kris, Mark G. ;
Rudin, Charles M. ;
Ni, Ai ;
Arcila, Maria ;
Ladanyi, Marc ;
Riely, Gregory J. .
CLINICAL CANCER RESEARCH, 2018, 24 (02) :334-340
[8]  
Asan U., 2017, NATURE, V541, P169
[9]   Acquired Resistance to KRASG12C Inhibition in Cancer [J].
Awad, M. M. ;
Liu, S. ;
Rybkin, I. I. ;
Arbour, K. C. ;
Dilly, J. ;
Zhu, V. W. ;
Johnson, M. L. ;
Heist, R. S. ;
Patil, T. ;
Riely, G. J. ;
Jacobson, J. O. ;
Yang, X. ;
Persky, N. S. ;
Root, D. E. ;
Lowder, K. E. ;
Feng, H. ;
Zhang, S. S. ;
Haigis, K. M. ;
Hung, Y. P. ;
Sholl, L. M. ;
Wolpin, B. M. ;
Wiese, J. ;
Christiansen, J. ;
Lee, J. ;
Schrock, A. B. ;
Lim, L. P. ;
Garg, K. ;
Li, M. ;
Engstrom, L. D. ;
Waters, L. ;
Lawson, J. D. ;
Olson, P. ;
Lito, P. ;
Ou, S. -H. I. ;
Christensen, J. G. ;
Janne, P. A. ;
Aguirre, A. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (25) :2382-2393
[10]   Genomic analyses identify molecular subtypes of pancreatic cancer [J].
Bailey, Peter ;
Chang, David K. ;
Nones, Katia ;
Johns, Amber L. ;
Patch, Ann-Marie ;
Gingras, Marie-Claude ;
Miller, David K. ;
Christ, Angelika N. ;
Bruxner, Tim J. C. ;
Quinn, Michael C. ;
Nourse, Craig ;
Murtaugh, L. Charles ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Manning, Suzanne ;
Nourbakhsh, Ehsan ;
Wani, Shivangi ;
Fink, Lynn ;
Holmes, Oliver ;
Chin, Vencssa ;
Anderson, Matthew J. ;
Kazakoff, Stephen ;
Leonard, Conrad ;
Newell, Felicity ;
Waddell, Nick ;
Wood, Scott ;
Xu, Qinying ;
Wilson, Peter J. ;
Cloonan, Nicole ;
Kassahn, Karin S. ;
Taylor, Darrin ;
Quek, Kelly ;
Robertson, Alan ;
Pantano, Lorena ;
Mincarelli, Laura ;
Sanchez, Luis N. ;
Evers, Lisa ;
Wu, Jianmin ;
Pinese, Mark ;
Cowley, Mark J. ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chantrill, Lorraine A. ;
Mawson, Amanda ;
Humphris, Jeremy ;
Chou, Angela ;
Pajic, Marina ;
Scarlett, Christopher J. .
NATURE, 2016, 531 (7592) :47-+