The structural basis for agonist and partial agonist action on a β1-adrenergic receptor

被引:505
作者
Warne, Tony [1 ]
Moukhametzianov, Rouslan [1 ]
Baker, Jillian G. [2 ]
Nehme, Rony [1 ]
Edwards, Patricia C. [1 ]
Leslie, Andrew G. W. [1 ]
Schertler, Gebhard F. X. [1 ]
Tate, Christopher G. [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 0QH, England
[2] Univ Nottingham, Sch Med, Inst Cell Signalling, Queens Med Ctr, Nottingham NG7 2UH, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
PROTEIN-COUPLED RECEPTOR; BETA-ADRENERGIC-RECEPTORS; HIGH-AFFINITY BINDING; BETA(2)-ADRENERGIC RECEPTOR; CRYSTAL-STRUCTURE; LIGAND-BINDING; AMINO-ACID; ACTIVATION; CRYSTALLOGRAPHY; CRYSTALLIZATION;
D O I
10.1038/nature09746
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
beta-adrenergic receptors (beta ARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline(1,2). Synthetic ligands have been developed that either activate or inhibit beta ARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermo-stabilized turkey (Meleagris gallopavo) beta(1)-adrenergic receptor (beta(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 angstrom contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering(3)). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.
引用
收藏
页码:241 / 244
页数:4
相关论文
共 50 条
  • [41] High Pressure Shifts the β1-Adrenergic Receptor to the Active Conformation in the Absence of G Protein
    Abiko, Layara Akemi
    Grahl, Anne
    Grzesiek, Stephan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (42) : 16663 - 16670
  • [42] The structural basis of agonist-induced activation in constitutively active rhodopsin
    Standfuss, Jorg
    Edwards, Patricia C.
    D'Antona, Aaron
    Fransen, Maikel
    Xie, Guifu
    Oprian, Daniel D.
    Schertler, Gebhard F.X.
    NATURE, 2011, 471 (7340) : 656 - 660
  • [43] Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor
    Sato, Tomomi
    Baker, Jillian
    Warne, Tony
    Brown, Giles A.
    Leslie, Andrew G. W.
    Congreve, Miles
    Tate, Christopher G.
    MOLECULAR PHARMACOLOGY, 2015, 88 (06) : 1024 - 1034
  • [44] Pro-inflammatory responses in human monocytes are β1-adrenergic receptor subtype dependent
    Grisanti, Laurel A.
    Evanson, Janel
    Marchus, Erica
    Jorissen, Heather
    Woster, Andrew P.
    DeKrey, Wanda
    Sauter, Edward R.
    Combs, Colin K.
    Porter, James E.
    MOLECULAR IMMUNOLOGY, 2010, 47 (06) : 1244 - 1254
  • [45] Human β1-Adrenergic Receptor Is Subject to Constitutive and Regulated N-terminal Cleavage
    Hakalahti, Anna E.
    Vierimaa, Miia M.
    Lilja, Minna K.
    Kumpula, Esa-Pekka
    Tuusa, Jussi T.
    Petaja-Repo, Ulla E.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (37) : 28850 - 28861
  • [46] AMP Is an Adenosine A1 Receptor Agonist
    Rittiner, Joseph E.
    Korboukh, Ilia
    Hull-Ryde, Emily A.
    Jin, Jian
    Janzen, William P.
    Frye, Stephen V.
    Zylka, Mark J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (08) : 5301 - 5309
  • [47] Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice
    Metzner, Katharina
    Gross, Tilman
    Balzulat, Annika
    Wack, Gesine
    Lu, Ruirui
    Schmidtko, Achim
    PURINERGIC SIGNALLING, 2021, 17 (03) : 503 - 514
  • [48] Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling
    Rana, Soumendra
    Sahoo, Amita Rani
    Majhi, Bharat Kumar
    MOLECULAR BIOSYSTEMS, 2016, 12 (05) : 1586 - 1599
  • [49] Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function
    Tripathi, Abhishek
    Vana, P. Geoff
    Chavan, Tanmay S.
    Brueggemann, Lioubov I.
    Byron, Kenneth L.
    Tarasova, Nadya I.
    Volkman, Brian F.
    Gaponenko, Vadim
    Majetschak, Matthias
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (13) : E1659 - E1668
  • [50] Thermostabilization of the β1-Adrenergic Receptor Correlates with Increased Entropy of the Inactive State
    Niesen, Michiel J. M.
    Bhattacharya, Supriyo
    Grisshammer, Reinhard
    Tate, Christopher G.
    Vaidehi, Nagarajan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (24) : 7283 - 7291