Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis

被引:73
作者
Sheng, Beibei [1 ]
Liu, Jinsong [1 ,2 ]
Li, Ziquan [1 ,3 ]
Wang, Menghui [1 ]
Zhu, Kongjun [2 ]
Qiu, Jinhao [2 ]
Wang, Jing [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[3] Nanjing Coll Chem Technol, Dept Chem Engn, Nanjing 210048, Jiangsu, Peoples R China
关键词
Crystal structure; Semiconductors; Optical materials and properties; MoS2; spheres; Hydrothermal method;
D O I
10.1016/j.matlet.2015.01.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flower-like MoS2 spheres were successfully prepared via a facile hydrothermal method. The effects of excess sulfur on the formation of MoS2 were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD pattern showed that the preferential orientation of the flower-like hexagonal 2H-MoS2 spheres was the (002) plane, and I-002/I-100 ratio values indicated that the (002) plane grew more completely than the (100) plane with increasing S/Mo ratio. The FESEM images revealed that the sheet thickness of the MoS2 spheres increased to similar to 30 nm with increasing S/Mo ratio, exposing more edges on the nanosheets of the MoS2 spheres. Photocatalytic properties of the products were studied, and the results showed that the MoS2 sample with a S/Mo ratio of 2.75 exhibited the highest degradation rate constant and methylene blue degradation rate under 90 min visible light irradiation. The results showed that the enhancement of photocatalytic activity originated from increasing exposed area of the {100} facets with increasing S/Mo ratio under the hydrothermal environment. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 156
页数:4
相关论文
共 16 条
[1]   Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts [J].
Jaramillo, Thomas F. ;
Jorgensen, Kristina P. ;
Bonde, Jacob ;
Nielsen, Jane H. ;
Horch, Sebastian ;
Chorkendorff, Ib .
SCIENCE, 2007, 317 (5834) :100-102
[2]  
Jung HS, 2009, EARTH PLANET SC LETT, V282, P323
[3]   Size-dependent structure of MoS2 nanocrystals [J].
Lauritsen, Jeppe V. ;
Kibsgaard, Jakob ;
Helveg, Stig ;
Topsoe, Henrik ;
Clausen, Bjerne S. ;
Laegsgaard, Erik ;
Besenbacher, Flemming .
NATURE NANOTECHNOLOGY, 2007, 2 (01) :53-58
[4]   Facile Synthesis and Characterization of Flower-Like PbS Microstructure via a Solvothermal Route [J].
Liu, Shuling ;
Liu, Hui ;
Shi, Qiang Qiang ;
Wang, ZhengQi ;
Xu, Yacong .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2014, 6 (03) :268-272
[5]   Hydrothermal synthesis of hollow MoS2 microspheres in ionic liquids/water binary emulsions [J].
Luo, Hao ;
Xu, Chao ;
Zou, Dingbing ;
Wang, Ling ;
Ying, Taokai .
MATERIALS LETTERS, 2008, 62 (20) :3558-3560
[6]   Atomically Thin MoS2: A New Direct-Gap Semiconductor [J].
Mak, Kin Fai ;
Lee, Changgu ;
Hone, James ;
Shan, Jie ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)
[7]   Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate [J].
Nagaraju, G. ;
Tharamani, C. N. ;
Chandrappa, G. T. ;
Livage, J. .
NANOSCALE RESEARCH LETTERS, 2007, 2 (09) :461-468
[8]   Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions [J].
Rajamathi, M ;
Seshadri, R .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2002, 6 (04) :337-345
[9]   THE ADSORPTION AND BINDING OF THIOPHENE, BUTENE AND H2S ON THE BASAL-PLANE OF MOS2 SINGLE-CRYSTALS [J].
SALMERON, M ;
SOMORJAI, GA ;
WOLD, A ;
CHIANELLI, R ;
LIANG, KS .
CHEMICAL PHYSICS LETTERS, 1982, 90 (02) :105-107
[10]   Emerging Photoluminescence in Monolayer MoS2 [J].
Splendiani, Andrea ;
Sun, Liang ;
Zhang, Yuanbo ;
Li, Tianshu ;
Kim, Jonghwan ;
Chim, Chi-Yung ;
Galli, Giulia ;
Wang, Feng .
NANO LETTERS, 2010, 10 (04) :1271-1275