DENSE CONVOLUTION FOR SEMANTIC SEGMENTATION

被引:0
作者
Han, Chaoyi [1 ]
Tao, Xiaoming [1 ]
Duan, Yiping [1 ]
Lu, Jianhua [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2018年
基金
中国国家自然科学基金;
关键词
semantic segmentation; fully convolutional network; dense convolution;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
State-of-the-art semantic segmentation methods adopt fully convolutional neural networks(FCNs) to solve this dense prediction problem. However, replacing fully connected layers with the standard 2D convolution layer is straightforward yet not optimal in generating segmentation results. In this paper we develop a dense convolution scheme that is more suitable for semantic segmentation. Instead of generating a single output, dense convolution produces the same number of output as its input and introduces spatial overlaps into current convolutions. Then each activation is obtained from multiple overlapped dense convolutions with learnable weights. Such dense convolution helps to reinforce local connections between activations and provide more flexible receptive fields for predictions. Experiments on benchmark dataset demonstrate the effectiveness of the proposed approach in semantic segmentation tasks.
引用
收藏
页码:2222 / 2226
页数:5
相关论文
共 18 条
  • [1] [Anonymous], PROC CVPR IEEE
  • [2] [Anonymous], 2015, PROC CVPR IEEE
  • [3] Fast, Exact and Multi-scale Inference for Semantic Image Segmentation with Deep Gaussian CRFs
    Chandra, Siddhartha
    Kokkinos, Iasonas
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 402 - 418
  • [4] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [5] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [6] Fu J, 2017, IEEE IMAGE PROC, P3085, DOI 10.1109/ICIP.2017.8296850
  • [7] Hariharan B, 2011, IEEE I CONF COMP VIS, P991, DOI 10.1109/ICCV.2011.6126343
  • [8] He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
  • [9] Huang G., 2017, ARXIV170309844
  • [10] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269