Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer

被引:13
作者
Lal, Jessica Castrillon [1 ,2 ,3 ]
Townsend, Madeline G. [1 ,2 ,4 ]
Mehta, Anita K. [1 ,2 ]
Oliwa, Madisson [1 ,2 ,4 ]
Miller, Eric [5 ]
Sotayo, Alaba [2 ]
Cheney, Emily [1 ,2 ]
Mittendorf, Elizabeth A. [1 ,2 ,4 ,6 ,7 ]
Letai, Anthony [2 ,7 ]
Guerriero, Jennifer L. [1 ,2 ,4 ,6 ,7 ]
机构
[1] Dana Farber Canc Inst, Susan E Smith Ctr Womens Canc, Breast Tumor Immunol Lab, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, 450 Brookline Ave, Boston, MA 02215 USA
[3] Cleveland Clin, Lerner Res Inst, Genom Med Inst, Cleveland, OH 44195 USA
[4] Brigham & Womens Hosp, Dept Surg, Div Breast Surg, 75 Francis St, Boston, MA 02115 USA
[5] Nanostring Technol, Seattle, WA USA
[6] Dana Farber Brigham & Womens Canc Ctr, Breast Oncol Program, Boston, MA 02215 USA
[7] Harvard Med Sch, Ludwig Ctr Canc Res Harvard, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Breast cancer; Immunotherapy; Immune checkpoint blockade; Syngeneic tumor models; Preclinical mouse models; Jessica Castrillon Lal and Madeline G; Townsend contributed equally to this work; REGULATORY T-CELLS; NIVOLUMAB PLUS IPILIMUMAB; MONOCLONAL-ANTIBODY; OPEN-LABEL; PHASE-III; CHEMOTHERAPY; BLOCKADE; MACROPHAGES; COMBINATION; PROGRESSION;
D O I
10.1186/s13058-021-01448-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The heterogeneity of the breast tumor microenvironment (TME) may contribute to the lack of durable responses to immune checkpoint blockade (ICB); however, mouse models to test this are currently lacking. Proper selection and use of preclinical models are necessary for rigorous, preclinical studies to rapidly move laboratory findings into the clinic. Methods Three versions of a common syngeneic model derived from the MMTV-PyMT autochthonous model were generated by inoculating 1E6, 1E5, or 1E4 cells derived from the MMTV-PyMT mouse into wildtype recipient mice. To elucidate how tumor latency and TME heterogeneity contribute to ICB resistance, comprehensive characterization of the TME using quantitative flow-cytometry and RNA expression analysis (NanoString) was performed. Subsequently, response to ICB was tested. These procedures were repeated using the EMT6 breast cancer model. Results The 3 syngeneic versions of the MMTV-PyMT model had vastly different TMEs that correlated to ICB response. The number of cells used to generate syngeneic tumors significantly influenced tumor latency, infiltrating leukocyte populations, and response to ICB. These results were confirmed using the EMT6 breast cancer model. Compared to the MMTV-PyMT autochthonous model, all 3 MMTV-PyMT syngeneic models had significantly more tumor-infiltrating lymphocytes (TILs; CD3(+), CD4(+), and CD8(+)) and higher proportions of PD-L1-positive myeloid cells, whereas the MMTV-PyMT autochthonous model had the highest frequency of myeloid cells out of total leukocytes. Increased TILs correlated with response to anti-PD-L1 and anti-CTLA-4 therapy, but PD-L1expression on tumor cells or PD-1 expression of T cells did not. Conclusions These studies reveal that tumor cell number correlates with tumor latency, TME, and response to ICB. ICB-sensitive and resistant syngeneic breast cancer models were identified, in which the 1E4 syngeneic model was most resistant to ICB. Given the lack of benefit from ICB in breast cancer, identifying robust murine models presented here provides the opportunity to further interrogate the TME for breast cancer treatment and provide novel insights into therapeutic combinations to overcome ICB resistance.
引用
收藏
页数:24
相关论文
共 85 条
[1]  
Adams S, 2018, CANCER RES, V78
[2]   Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. [J].
Adams, Sylvia ;
Schmid, Peter ;
Rugo, Hope S. ;
Winer, Eric P. ;
Loirat, Delphine ;
Awada, Ahmad ;
Cescon, David W. ;
Iwata, Hiroji ;
Campone, Mario ;
Nanda, Rita ;
Hui, Rina ;
Curigliano, Giuseppe ;
Toppmeyer, Deborah ;
O'Shaughnessy, Joyce ;
Loi, Sherene ;
Paluch-Shimon, Shani ;
Card, Deborah ;
Zhao, Jing ;
Karantza, Vassiliki ;
Cortes, Javier .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
[3]   Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation [J].
Allen, Elizabeth ;
Jabouille, Arnaud ;
Rivera, Lee B. ;
Lodewijckx, Inge ;
Missiaen, Rindert ;
Steri, Veronica ;
Feyen, Kevin ;
Tawney, Jaime ;
Hanahan, Douglas ;
Michael, Iacovos P. ;
Bergers, Gabriele .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (385)
[4]   Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC [J].
Antonia, S. J. ;
Villegas, A. ;
Daniel, D. ;
Vicente, D. ;
Murakami, S. ;
Hui, R. ;
Kurata, T. ;
Chiappori, A. ;
Lee, K. H. ;
de Wit, M. ;
Cho, B. C. ;
Bourhaba, M. ;
Quantin, X. ;
Tokito, T. ;
Mekhail, T. ;
Planchard, D. ;
Kim, Y. -C. ;
Karapetis, C. S. ;
Hiret, S. ;
Ostoros, G. ;
Kubota, K. ;
Gray, J. E. ;
Paz-Ares, L. ;
Carpeno, J. de Castro ;
Faivre-Finn, C. ;
Reck, M. ;
Vansteenkiste, J. ;
Spigel, D. R. ;
Wadsworth, C. ;
Melillo, G. ;
Taboada, M. ;
Dennis, P. A. ;
Ozguroglu, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (24) :2342-2350
[5]   Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial [J].
Antonia, Scott J. ;
Lopez-Martin, Jose A. ;
Bendell, Johanna ;
Ott, Patrick A. ;
Taylor, Matthew ;
Eder, Joseph Paul ;
Jaeger, Dirk ;
Pietanza, M. Catherine ;
Le, Dung T. ;
de Braud, Filippo ;
Morse, Michael A. ;
Ascierto, Paolo A. ;
Horn, Leora ;
Amin, Asim ;
Pillai, Rathi N. ;
Evans, Jeffry ;
Chau, Ian ;
Bono, Petri ;
Atmaca, Akin ;
Sharma, Padmanee ;
Harbison, Christopher T. ;
Lin, Chen-Sheng ;
Christensen, Olaf ;
Calvo, Emiliano .
LANCET ONCOLOGY, 2016, 17 (07) :883-895
[6]   Coinhibitory Pathways in Immunotherapy for Cancer [J].
Baumeister, Susanne H. ;
Freeman, Gordon J. ;
Dranoff, Glenn ;
Sharpe, Arlene H. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 :539-573
[7]   Genomic characterization of metastatic breast cancers [J].
Bertucci, Francois ;
Ng, Charlotte K. Y. ;
Patsouris, Anne ;
Droin, Nathalie ;
Piscuoglio, Salvatore ;
Carbuccia, Nadine ;
Soria, Jean Charles ;
Dien, Alicia Tran ;
Adnani, Yahia ;
Kamal, Maud ;
Garnier, Severine ;
Meurice, Guillaume ;
Jimenez, Marta ;
Dogan, Semih ;
Verret, Benjamin ;
Chaffanet, Max ;
Bachelot, Thomas ;
Campone, Mario ;
Lefeuvre, Claudia ;
Bonnefoi, Herve ;
Dalenc, Florence ;
Jacquet, Alexandra ;
De Filippo, Maria R. ;
Babbar, Naveen ;
Birnbaum, Daniel ;
Filleron, Thomas ;
Le Tourneau, Christophe ;
Andre, Fabrice .
NATURE, 2019, 569 (7757) :560-+
[8]   Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm [J].
Biswas, Subhra K. ;
Mantovani, Alberto .
NATURE IMMUNOLOGY, 2010, 11 (10) :889-896
[9]   Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer [J].
Brahmer, Julie R. ;
Tykodi, Scott S. ;
Chow, Laura Q. M. ;
Hwu, Wen-Jen ;
Topalian, Suzanne L. ;
Hwu, Patrick ;
Drake, Charles G. ;
Camacho, Luis H. ;
Kauh, John ;
Odunsi, Kunle ;
Pitot, Henry C. ;
Hamid, Omid ;
Bhatia, Shailender ;
Martins, Renato ;
Eaton, Keith ;
Chen, Shuming ;
Salay, Theresa M. ;
Alaparthy, Suresh ;
Grosso, Joseph F. ;
Korman, Alan J. ;
Parker, Susan M. ;
Agrawal, Shruti ;
Goldberg, Stacie M. ;
Pardoll, Drew M. ;
Gupta, Ashok ;
Wigginton, Jon M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (26) :2455-2465
[10]   Targeting macrophages: therapeutic approaches in cancer [J].
Cassetta, Luca ;
Pollard, Jeffrey W. .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (12) :887-904