An effective version of Belyi's theorem in positive characteristic

被引:0
作者
Wakabayashi, Yasuhiro [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
关键词
Algebraic curve; Positive characteristic; Belyi map; Covering; COVERS;
D O I
10.1016/j.jnt.2021.04.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of the present paper is to give an effective version of the noncritical p-tame Belyi theorem. That is to say, we compute an explicit bound on the minimal degree of tamely ramified Belyi maps in positive characteristic which are unramified at a prescribed finite set of points. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 268
页数:18
相关论文
共 15 条
[1]  
Anbar N., 2018, ARXIV181100773V1MATH
[2]  
Belyi, 2002, MAT SBORNIK, V193, P21
[3]   ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD [J].
BELYI, GV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02) :247-256
[4]   HURWITZ SCHEMES AND IRREDUCIBILITY OF MODULI OF ALGEBRAIC CURVES [J].
FULTON, W .
ANNALS OF MATHEMATICS, 1969, 90 (03) :542-&
[5]  
Grothendieck A., 1997, LONDON MATH SOC LECT, V242, P5
[6]  
Hartshorne R., 1977, Algebraic geometry, pxvi+496
[7]  
Katz N, 1987, SEMIN BOURBAKI
[8]   An effective version of Belyi's Theorem [J].
Khadjavi, LS .
JOURNAL OF NUMBER THEORY, 2002, 96 (01) :22-47
[9]  
Litcanu R, 2004, MONATSH MATH, V142, P327, DOI 10.1007/s00605-003-0142-2
[10]  
Milne J.S., 1986, ARITHMETIC GEOMETRY, P167