Fixed-Time Adaptive Fuzzy Control for Uncertain Nonlinear Systems

被引:103
作者
Lu, Kaixin [1 ,2 ]
Liu, Zhi [1 ,2 ]
Wang, Yaonan [3 ,4 ]
Chen, C. L. Philip [5 ,6 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Guangdong HongKong Macao Joint Lab Smart Discrete, Guangzhou 510006, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[4] Hunan Univ, Natl Engn Lab Robot Visual Percept & Control, Changsha 410082, Peoples R China
[5] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
[6] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear systems; Adaptive systems; Fuzzy control; Asymptotic stability; Uncertainty; Switches; Adaptive fuzzy control; backstepping; fixed time; uncertain nonlinear systems; DYNAMIC SURFACE CONTROL; FINITE-TIME; TRACKING CONTROL; INTERVAL TYPE-2; STABILIZATION; DESIGN; STABILITY; SYNCHRONIZATION; CONSENSUS; INPUT;
D O I
10.1109/TFUZZ.2020.3028458
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most current methodologies on fixed-time adaptive fuzzy control for uncertain nonlinear systems result in practical fixed-time stability but not fixed-time stability, or require prior knowledge of the system dynamics. To obviate such restrictions, a fixed-time adaptive fuzzy control scheme is newly proposed with the discoveries of a singularity-avoidance virtual control design, a modified class of tuning functions, and a projection operator based adaptation mechanism. Fixed-time stability is established in the sense that the tracking error asymptotically converges to a user-defined interval within a prescribed fixed time. Illustrative examples verify the approaches developed.
引用
收藏
页码:3769 / 3781
页数:13
相关论文
共 71 条
[1]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[2]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[3]   Fixed-time adaptive neural tracking control for a class of uncertain nonstrict nonlinear systems [J].
Ba, Desheng ;
Li, Yuan-Xin ;
Tong, Shaocheng .
NEUROCOMPUTING, 2019, 363 :273-280
[4]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[5]   A sufficiently smooth projection operator [J].
Cai, Z ;
de Queiroz, MS ;
Dawson, DM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (01) :135-139
[6]   Prespecifiable fixed-time control for a class of uncertain nonlinear systems in strict-feedback form [J].
Cao, Ye ;
Wen, Changyun ;
Tan, Shilei ;
Song, Yongduan .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (03) :1203-1222
[7]   Multiobjective Optimization and Comparison of Nonsingleton Type-1 and Singleton Interval Type-2 Fuzzy Logic Systems [J].
Cara, Ana Belen ;
Wagner, Christian ;
Hagras, Hani ;
Pomares, Hector ;
Rojas, Ignacio .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (03) :459-476
[8]   Geometric type-1 and type-2 fuzzy logic systems [J].
Coupland, Simon ;
John, Robert I. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) :3-15
[9]   Finite-Time Attitude Tracking Control of Spacecraft With Application to Attitude Synchronization [J].
Du, Haibo ;
Li, Shihua ;
Qian, Chunjiang .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2711-2717
[10]   Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems [J].
Espitia, Nicolas ;
Polyakov, Andrey ;
Efimov, Denis ;
Perruquetti, Wilfrid .
AUTOMATICA, 2019, 103 :398-407