On the effect of normalization in MOEA/D for multi-objective and many-objective optimization

被引:60
作者
Ishibuchi, Hisao [1 ]
Doi, Ken [2 ]
Nojima, Yusuke [2 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen, Peoples R China
[2] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Sakai, Osaka, Japan
关键词
Evolutionary multi-objective optimization (EMO); Many-objective optimization; Objective space normalization; MOEA/D; Decomposition-based algorithms; EVOLUTIONARY ALGORITHM; DECOMPOSITION; SELECTION;
D O I
10.1007/s40747-017-0061-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The frequently used basic version of MOEA/D (multi-objective evolutionary algorithm based on decomposition) has no normalization mechanism of the objective space, whereas the normalization was discussed in the original MOEA/D paper. As a result, MOEA/D shows difficulties in finding a set of uniformly distributed solutions over the entire Pareto front when each objective has a totally different range of objective values. Recent variants of MOEA/D have normalization mechanisms for handling such a scaling issue. In this paper, we examine the effect of the normalization of the objective space on the performance of MOEA/D through computational experiments. A simple normalization mechanism is used to examine the performance of MOEA/D with and without normalization. These two types of MOEA/D are also compared with recently proposed many-objective algorithms: NSGA-III, MOEA/DD, and 0-DEA. In addition to the frequently used many-objective test problems DTLZ and WFG, we use their minus versions. We also propose two variants of the DTLZ test problems for examining the effect of the normalization in MOEA/D. Test problems in one variant have objective functions with totally different ranges. The other variant has a kind of deceptive nature, where the range of each objective is the same on the Pareto front but totally different over the entire feasible region. Computational experiments on those test problems clearly show the necessity of the normalization. It is also shown that the normalization has both positive and negative effects on the performance of MOEA/D. These observations suggest that the influence of the normalization is strongly problem dependent.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 28 条
[1]   A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization [J].
Asafuddoula, M. ;
Ray, Tapabrata ;
Sarker, Ruhul .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (03) :445-460
[2]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[3]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[4]  
Bhattacharjee KS, 2017, IEEE C EVOL COMPUTAT, P105, DOI 10.1109/CEC.2017.7969302
[5]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[6]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[7]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [J].
Deb, Kalyanmoy ;
Jain, Himanshu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :577-601
[8]   Generalized decomposition and cross entropy methods for many-objective optimization [J].
Giagkiozis, I. ;
Purshbuse, R. C. ;
Fleming, P. J. .
INFORMATION SCIENCES, 2014, 282 :363-387
[9]   A review of multiobjective test problems and a scalable test problem toolkit [J].
Huband, Simon ;
Hingston, Phil ;
Barone, Luigi ;
While, Lyndon .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (05) :477-506
[10]   Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes [J].
Ishibuchi, Hisao ;
Setoguchi, Yu ;
Masuda, Hiroyuki ;
Nojima, Yusuke .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (02) :169-190