A Study of the Jacobi Stability of the Rosenzweig-MacArthur Predator-Prey System through the KCC Geometric Theory

被引:9
|
作者
Munteanu, Florian [1 ]
机构
[1] Univ Craiova, Dept Appl Math, Al I Cuza 13, Craiova 200585, Romania
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 09期
关键词
predator-prey systems; Kolmogorov systems; KCC theory; the deviation curvature tensor; Jacobi stability; BIFURCATION-ANALYSIS;
D O I
10.3390/sym14091815
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider an autonomous two-dimensional ODE Kolmogorov-type system with three parameters, which is a particular system of the general predator-prey systems with a Holling type II. By reformulating this system as a set of two second-order differential equations, we investigate the nonlinear dynamics of the system from the Jacobi stability point of view using the Kosambi-Cartan-Chern (KCC) geometric theory. We then determine the nonlinear connection, the Berwald connection, and the five KCC invariants which express the intrinsic geometric properties of the system, including the deviation curvature tensor. Furthermore, we obtain the necessary and sufficient conditions for the parameters of the system in order to have the Jacobi stability near the equilibrium points, and we point these out on a few illustrative examples.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] DYNAMICS IN A ROSENZWEIG-MACARTHUR PREDATOR-PREY SYSTEM WITH QUIESCENCE
    Wang, Jinfeng
    Fan, Hongxia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 909 - 918
  • [2] Double Allee effects on prey in a modified Rosenzweig-MacArthur predator-prey model
    González-Olivares, Eduardo
    Huincahue-Arcos, Jaime
    Lecture Notes in Electrical Engineering, 2014, 307 : 105 - 120
  • [3] Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey
    Beay, Lazarus Kalvein
    Suryanto, Agus
    Darti, Isnani
    Trisilowati
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 4080 - 4097
  • [4] Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey
    Beay L.K.
    Suryanto A.
    Darti I.
    Trisilowati
    Suryanto, Agus (suryanto@ub.ac.id), 1600, American Institute of Mathematical Sciences (17): : 4080 - 4097
  • [5] The Rosenzweig-MacArthur Graphical Criterion for a Predator-Prey Model with Variable Mortality Rate
    Hammoum, Amina
    Sari, Tewfik
    Yadi, Karim
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [6] Regime shift in Rosenzweig-Macarthur predator-prey model in presence of strong Allee effect in prey
    Rakshit, Biswambhar
    Raghunathan, Thirumalai Vaasan
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7715 - 7725
  • [7] Dynamics of a discrete Rosenzweig-MacArthur predator-prey model with piecewise-constant arguments
    Wang, Cheng
    Sun, Bin
    Zhao, Qianqian
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [8] Dynamics of the discrete-time Rosenzweig-MacArthur predator-prey system in the closed positively invariant set
    Beso, E.
    Kalabusic, S.
    Pilav, E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [9] Large speed traveling waves for the Rosenzweig-MacArthur predator-prey model with spatial diffusion
    Ducrot, Arnaud
    Liu, Zhihua
    Magal, Pierre
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [10] Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-MacArthur predator-prey model
    Grunert, Katrin
    Holden, Helge
    Jakobsen, Espen R.
    Stenseth, Nils Chr
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (04)