Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos

被引:37
作者
Hurem, Selma [1 ,2 ]
Gomes, Tania [1 ,3 ]
Brede, Dag A. [1 ,4 ]
Hansen, Elisabeth Lindbo [1 ,5 ]
Mutoloki, Stephen [2 ]
Fernandez, Cristian [6 ]
Mothersill, Carmel [7 ]
Salbu, Brit [1 ,4 ]
Kassaye, Yetneberk A. [1 ,4 ]
Olsen, Ann-Karin [1 ,8 ]
Oughton, Deborah [1 ,4 ]
Alestrom, Peter [1 ,2 ]
Lyche, Jan L. [1 ,2 ]
机构
[1] NMBU, Ctr Environm Radioact CERAD CoE, N-1433 As, Norway
[2] Norwegian Univ Life Sci NMBU, Fac Vet Med & Biosci, POB 8146 Dept, N-0033 Oslo, Norway
[3] Norwegian Inst Water Res NIVA, Gaustadalleen 21, NO-0349 Oslo, Norway
[4] Norwegian Univ Life Sci NMBU, Fac Environm Sci & Nat Resource Management, N-1433 As, Norway
[5] Norwegian Radiat Protect Author, Postboks 55, N-1332 Osteras, Norway
[6] Univ Bern, Inst Anat, Baltzerstr 2, CH-3000 Bern, Switzerland
[7] McMaster Univ, Dept Biol, 1280 Main St, West Hamilton, ON, Canada
[8] Norwegian Inst Publ Hlth, POB 4404 Nydalen, N-0403 Oslo, Norway
关键词
Zebrafish; Gamma irradiation; Oxidative stress; DNA; Bystander effects; Delayed effects; IONIZING-RADIATION EXPOSURE; CHROMOSOMAL INSTABILITY; DNA-DAMAGE; ADAPTIVE RESPONSE; OXIDATIVE STRESS; GERM-CELLS; PARTICLE; IMMUNE; ASSAY; TRANSMISSION;
D O I
10.1016/j.envres.2017.07.053
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7 mGy/h for 27 days, total doses 31 and 5.2 Gy) and embryogenesis (9.6 mGy/h for 65 h; total dose 0.62 Gy). Progeny of FO exposed to 53 mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8 h post fertilization (hpf). Control and FO fish exposed to 8.7 mGy/h were used to create four lines in the first filial generation (Fl): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi-and transgenerational studies to assess the environmental impact of gamma radiation.
引用
收藏
页码:564 / 578
页数:15
相关论文
共 78 条
[1]   Genotoxic and Reprotoxic Effects of Tritium and External Gamma Irradiation on Aquatic Animals [J].
Adam-Guillermin, Christelle ;
Pereira, Sandrine ;
Della-Vedova, Claire ;
Hinton, Tom ;
Garnier-Laplace, Jacqueline .
REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, VOL 220, 2012, 220 :67-103
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]  
Aird E G A, 1996, BRIT J RADIOLOGY S, V25
[4]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[5]  
[Anonymous], 1995, NISTIR
[6]   Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal [J].
Ayala, Antonio ;
Munoz, Mario F. ;
Argueelles, Sandro .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2014, 2014
[7]   Inter-comparison of absorbed dose rates for non-human biota [J].
Batlle, J. Vives i ;
Balonov, M. ;
Beaugelin-Seiller, K. ;
Beresford, N. A. ;
Brown, J. ;
Cheng, J-J. ;
Copplestone, D. ;
Doi, M. ;
Filistovic, V. ;
Golikov, V. ;
Horyna, J. ;
Hosseini, A. ;
Howard, B. J. ;
Jones, S. R. ;
Kamboj, S. ;
Kryshev, A. ;
Nedveckaite, T. ;
Olyslaegers, G. ;
Proehl, G. ;
Sazykina, T. ;
Ulanovsky, A. ;
Lynch, S. Vives ;
Yankovich, T. ;
Yu, C. .
RADIATION AND ENVIRONMENTAL BIOPHYSICS, 2007, 46 (04) :349-373
[8]  
Bjerke H., 2014, NRPA TECHNICAL DOCUM, V2
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans [J].
Buisset-Goussen, Adeline ;
Goussen, Benoit ;
Della-Vedova, Claire ;
Galas, Simon ;
Adam-Guillermin, Christelle ;
Lecomte-Pradines, Catherine .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2014, 137 :190-197