QUASI-PERIODIC SOLUTIONS OF NONLINEAR BEAM EQUATIONS WITH QUINTIC QUASI-PERIODIC NONLINEARITIES

被引:0
作者
Tuo, Qiuju [1 ,2 ]
Si, Jianguo [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Infinite dimensional Hamiltonian systems; KAM theory; HAMILTONIAN PERTURBATIONS; KAM THEOREM; STABILITY; SYSTEMS; TORI;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities u(ll) + u(xxxx) + (B + epsilon phi(t))u(5) = 0 under periodic boundary conditions, where B is a positive constant, epsilon is a small positive parameter, phi(t) is a real analytic quasi-periodic function in t with frequency vector w = (w(1),w(2,)...,w(m)). It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.
引用
收藏
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 2005, ANN MATH STUD
[2]   Families of periodic orbits for some PDE's in higher dimensions [J].
Bambusi, D ;
Paleari, S .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2002, 1 (02) :269-279
[3]   Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods [J].
Bambusi, D ;
Graffi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) :465-480
[4]  
BAMBUSI D, 2000, ANN SCUOLA NORM SUP, V29, P823
[5]   An abstract Nash-Moser theorem with parameters and applications to PDEs [J].
Berti, M. ;
Bolle, P. ;
Procesi, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :377-399
[6]   Stability of zero solutions of essentially nonlinear one-degree-of-freedom Hamiltonian and reversible systems [J].
Bibikov, YN .
DIFFERENTIAL EQUATIONS, 2002, 38 (05) :609-614
[7]  
Bourgain Jean, 1994, IMRN, V11, p475ff, DOI DOI 10.1155/S1073792894000516
[8]  
DRABEK P, 1986, CZECH MATH J, V36, P434
[9]   EXPONENTIAL ATTRACTORS FOR EXTENSIBLE BEAM EQUATIONS [J].
EDEN, A ;
MILANI, AJ .
NONLINEARITY, 1993, 6 (03) :457-479
[10]   On Reducibility of Schrodinger Equations with Quasiperiodic in Time Potentials [J].
Eliasson, Hakan L. ;
Kuksin, Sergei B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (01) :125-135