A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods

被引:49
作者
Antonietti, Paola F. [1 ]
Houston, Paul [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX Modeling & Sci Comp, I-20133 Milan, Italy
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
Schwarz preconditioners; Domain decomposition; hp-discontinuous Galerkin methods; ADDITIVE SCHWARZ METHODS; P-VERSION; SPECTRAL ELEMENTS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1007/s10915-010-9390-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.
引用
收藏
页码:124 / 149
页数:26
相关论文
共 45 条
[31]   An additive Schwarz method for the h-p version of the finite element method in three dimensions [J].
Guo, BQ ;
Cao, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :632-654
[32]   Nitsche type mortaring for some elliptic problem with corner singularities [J].
Heinrich, B ;
Pietsch, K .
COMPUTING, 2002, 68 (03) :217-238
[33]  
Hesthaven JS, 2008, TEXTS APPL MATH, V54, P1
[34]   Discontinuous hp-finite element methods for advection-diffusion-reaction problems [J].
Houston, P ;
Schwab, C ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2133-2163
[35]   An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems [J].
Lasser, C ;
Toselli, A .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1215-1238
[36]   ADDITIVE SCHWARZ METHODS FOR THE P-VERSION FINITE-ELEMENT METHOD [J].
PAVARINO, LF .
NUMERISCHE MATHEMATIK, 1994, 66 (04) :493-515
[37]   SCHWARZ METHODS WITH LOCAL REFINEMENT FOR THE P-VERSION FINITE-ELEMENT METHOD [J].
PAVARINO, LF .
NUMERISCHE MATHEMATIK, 1994, 69 (02) :185-211
[38]   Iterative substructuring methods for spectral elements: Problems in three dimensions based on numerical quadrature [J].
Pavarino, LF ;
Widlund, OB .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (1-2) :193-209
[39]   A polylogarithmic bound for an iterative substructuring method for spectral elements in three dimensions [J].
Pavarino, LF ;
Widlund, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1303-1335
[40]  
Quarteroni A., 1994, NUMERICAL APPROXIMA