A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods

被引:49
作者
Antonietti, Paola F. [1 ]
Houston, Paul [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX Modeling & Sci Comp, I-20133 Milan, Italy
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
Schwarz preconditioners; Domain decomposition; hp-discontinuous Galerkin methods; ADDITIVE SCHWARZ METHODS; P-VERSION; SPECTRAL ELEMENTS; APPROXIMATIONS; ALGORITHMS;
D O I
10.1007/s10915-010-9390-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.
引用
收藏
页码:124 / 149
页数:26
相关论文
共 45 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   A preconditioner based on domain decomposition for h-p finite-element approximation on quasi-uniform meshes [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1358-1376
[3]  
Antonietti P.F., 2008, LECT NOTES COMPUT SC, V60, P185
[4]  
Antonietti PE, 2009, COMMUN COMPUT PHYS, V5, P398
[5]   Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems [J].
Antonietti, Paola F. ;
Ayuso, Blanca .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (03) :443-469
[6]   Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case [J].
Antonietti, Paola F. ;
Ayuso, Blanca .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2007, 41 (01) :21-54
[7]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[8]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[9]   EFFICIENT PRECONDITIONING FOR THE RHO-VERSION FINITE-ELEMENT METHOD IN 2 DIMENSIONS [J].
BABUSKA, I ;
CRAIG, A ;
MANDEL, J ;
PITKARANTA, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :624-661
[10]  
Bjorstad P.E., 1989, DOMAIN DECOMPOSITION, P147