A new look at effective interactions between microgel particles

被引:107
作者
Bergman, Maxime J. [1 ]
Gnan, Nicoletta [2 ,3 ]
Obiols-Rabasa, Marc [1 ,4 ]
Meijer, Janne-Mieke [1 ,5 ]
Rovigatti, Lorenzo [2 ,3 ]
Zaccarelli, Emanuela [2 ,3 ]
Schurtenberger, Peter [1 ]
机构
[1] Lund Univ, Dept Chem, Div Phys Chem, POB 124SE, S-22100 Lund, Sweden
[2] CNR, ISC, Piazzale A Moro 2, I-00185 Rome, Italy
[3] Sapienza Univ Rome, Dept Phys, Piazzale A Moro 2, I-00185 Rome, Italy
[4] CR Competence AB, Nat Vetarevagen 14, S-22362 Lund, Sweden
[5] Univ Konstanz, Dept Phys, POB 688D, D-78457 Constance, Germany
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
瑞典研究理事会; 欧洲研究理事会;
关键词
THERMORESPONSIVE MICROGELS; PHASE-BEHAVIOR; RHEOLOGY; TRANSITIONS; SUSPENSIONS; HYDROGELS;
D O I
10.1038/s41467-018-07332-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermoresponsive microgels find widespread use as colloidal model systems, because their temperature-dependent size allows facile tuning of their volume fraction in situ. However, an interaction potential unifying their behavior across the entire phase diagram is sorely lacking. Here we investigate microgel suspensions in the fluid regime at different volume fractions and temperatures, and in the presence of another population of small microgels, combining confocal microscopy experiments and numerical simulations. We find that effective interactions between microgels are clearly temperature dependent. In addition, microgel mixtures possess an enhanced stability compared to hard colloid mixtures - a property not predicted by a simple Hertzian model. Based on numerical calculations we propose a multi-Hertzian model, which reproduces the experimental behavior for all studied conditions. Our findings highlight that effective interactions between microgels are much more complex than usually assumed, displaying a crucial dependence on temperature and on the internal core-corona architecture of the particles.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Preparation of Monodisperse Poly(N-isopropylacrylamide) Microgel Particles with Homogenous Cross-Link Density Distribution
    Acciaro, Roberta
    Gilanyi, Tibor
    Varga, Imre
    [J]. LANGMUIR, 2011, 27 (12) : 7917 - 7925
  • [2] Allen M.P., 2017, COMPUTER SIMULATION
  • [3] Premelting at defects within bulk colloidal crystals
    Alsayed, AM
    Islam, MF
    Zhang, J
    Collings, PJ
    Yodh, AG
    [J]. SCIENCE, 2005, 309 (5738) : 1207 - 1210
  • [4] Mobile Linkers on DNA-Coated Colloids: Valency without Patches
    Angioletti-Uberti, Stefano
    Varilly, Patrick
    Mognetti, Bortolo M.
    Frenkel, Daan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (12)
  • [5] Ultrasoft, highly deformable microgels
    Bachman, Haylee
    Brown, Ashley C.
    Clarke, Kimberly C.
    Dhada, Kabir S.
    Douglas, Alison
    Hansen, Caroline E.
    Herman, Emily
    Hyatt, John S.
    Kodlekere, Purva
    Meng, Zhiyong
    Saxena, Shalini
    Spears, Mark W., Jr.
    Welsch, Nicole
    Lyon, L. Andrew
    [J]. SOFT MATTER, 2015, 11 (10) : 2018 - 2028
  • [6] EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES
    BATCHELOR, GK
    [J]. JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) : 97 - 117
  • [7] Comparing colloidal phase separation induced by linear polymer and by microgel particles
    Bayliss, K.
    van Duijneveldt, J. S.
    Faers, M. A.
    Vermeer, A. W. P.
    [J]. SOFT MATTER, 2011, 7 (21) : 10345 - 10352
  • [8] Swelling of micro-hydrogels with a crosslinker gradient
    Boon, Niels
    Schurtenberger, Peter
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (35) : 23740 - 23746
  • [9] Observation and characterization of the vestige of the jamming transition in a thermal three-dimensional system
    Caswell, Thomas A.
    Zhang, Zexin
    Gardel, Margaret L.
    Nagel, Sidney R.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [10] Jamming and overpacking fuzzy microgels: Deformation, interpenetration, and compression
    Conley, Gaurasundar M.
    Aebischer, Philippe
    Nojd, Sofi
    Schurtenberger, Peter
    Scheffold, Frank
    [J]. SCIENCE ADVANCES, 2017, 3 (10):