Jacobi-Type Differential Relations for the Lauricella Function FD(N)

被引:4
作者
Bezrodnykh, S. I. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia
[2] Lomonosov Moscow State Univ, Sternberg State Astron Inst, Moscow, Russia
[3] Peoples Friendship Univ Russia, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
generalized Lauricella hypergeometric function; Jacobi-type differential relation; Jacobi identity; Gauss function; Christoffel-Schwarz integral; FORMULAS;
D O I
10.1134/S0001434616050205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the generalized Lauricella hypergeometric function F-D((N)), Jacobi-type differential relations are obtained and their proof is given. A new system of partial differential equations for the function F-D((N)) is derived. Relations between associated Lauricella functions are presented. These results possess a wide range of applications, including the theory of Riemann-Hilbert boundary-value problem.
引用
收藏
页码:821 / 833
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[2]  
[Anonymous], 1926, FONCTIONS HYPERGEOME
[3]  
Appell P., 1882, J MATH PURE APPL, V8, P173
[4]   Analytic continuation formulas and Jacobi-type relations for Lauricella function [J].
Bezrodnykh, S. I. .
DOKLADY MATHEMATICS, 2016, 93 (02) :129-134
[5]   An analysis of magnetic field and magnetosphere of neutron star under effect of a shock wave [J].
Bezrodnykh, S. I. ;
Somov, B. V. .
ADVANCES IN SPACE RESEARCH, 2015, 56 (05) :964-969
[6]   Singular Riemann-Hilbert problem in complex-shaped domains [J].
Bezrodnykh, S. I. ;
Vlasov, V. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (12) :1826-1875
[7]   Generalized Analytical Models of Syrovatskii's Current Sheet [J].
Bezrodnykh, S. I. ;
Vlasov, V. I. ;
Somov, B. V. .
ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2011, 37 (02) :113-130
[8]  
Bezrodnykh S. I., 2006, SPECTRAL EVOLUT PROB, V16, P112
[9]  
Bezrodnykh S. I., 2006, 3 INT C MATH ID PL C, P18
[10]  
Bezrodnykh S. I., 2006, THESIS