Detecting Code Injection Attacks on Hybrid Apps with Machine Learning

被引:1
|
作者
Xiao, Xi [1 ]
Yan, Ruibo [1 ]
Ye, Runguo [2 ]
Peng, Sancheng [3 ]
Li, Qing [1 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen, Peoples R China
[2] China Elect Standardizat Inst, Beijing, Peoples R China
[3] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou, Guangdong, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2017年 / 18卷 / 04期
关键词
Code injection; Hybrid application; Information gain; Chi-square test; Machine learning; CLASSIFICATION RULES;
D O I
10.6138/JIT.2017.18.4.20160420
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile devices become more and more popular. While code injection attacks can happen in hybrid applications on mobile systems and cause great damage. Thus, it is urgent to detect these attacks. However, the time complexity of the existing detection method is very high. In this paper, we propose a novel detection model based on machine learning. The frequently-used functions in PhoneGap, JavaScript and jQuery are regarded as new features in our model. We use information gain and Chi-square test to select key features from these functions. Then five distinct feature vectors are constructed by using different feature generation methods. Finally, based on these vectors, we employ six kinds of machine learning classifiers, such as genetic algorithms and online learning algorithms, to detect code injection vulnerabilities in hybrid applications. Extensive experiments demonstrate that the extended features can describe the application behavior better and our feature selection methods have good performance. In contrast to the other method, our method reduces the time complexity and reaches higher precision.
引用
收藏
页码:843 / 854
页数:12
相关论文
共 50 条
  • [31] Machine Learning and Feature Engineering for Detecting Living off the Land Attacks
    Boros, Tiberiu
    Cotaie, Andrei
    Stan, Antrei
    Vikramjeet, Kumar
    Malik, Vivek
    Davidson, Joseph
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2022, : 133 - 140
  • [32] Machine learning-based dynamic analysis of Android apps with improved code coverage
    Yerima, Suleiman Y.
    Alzaylaee, Mohammed K.
    Sezer, Sakir
    EURASIP JOURNAL ON INFORMATION SECURITY, 2019, 2019 (1)
  • [33] Machine learning-based dynamic analysis of Android apps with improved code coverage
    Suleiman Y. Yerima
    Mohammed K. Alzaylaee
    Sakir Sezer
    EURASIP Journal on Information Security, 2019
  • [34] Detecting Code Smells using Machine Learning Techniques: Are We There Yet?
    Di Nucci, Dario
    Palomba, Fabio
    Tamburri, Damian A.
    Serebrenik, Alexander
    De Lucia, Andrea
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2018), 2018, : 612 - 621
  • [35] Stealthy and Sparse False Data Injection Attacks Based on Machine Learning
    Tian, Jiwei
    Wang, Buhong
    Li, Tengyao
    Shang, Fute
    Cao, Kunrui
    Li, Jing
    CYBERSPACE SAFETY AND SECURITY, PT I, 2020, 11982 : 337 - 347
  • [36] An improved filter against injection attacks using regex and machine learning
    Chegu S.
    Reddy G.U.
    Bhambore B.S.
    Adeab K.A.
    Honnavalli P.
    Eswaran S.
    Network Security, 2022, 2022 (09)
  • [37] Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods
    Mingtao Wu
    Zhengyi Song
    Young B. Moon
    Journal of Intelligent Manufacturing, 2019, 30 : 1111 - 1123
  • [38] A Machine Learning Approach for Detecting GPS Location Spoofing Attacks in Autonomous Vehicles
    Filippou, S.
    Achilleos, A.
    Zukhraf, S. Z.
    Laoudias, C.
    Malialis, K.
    Michael, M. K.
    Ellinas, G.
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [39] Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods
    Wu, Mingtao
    Song, Zhengyi
    Moon, Young B.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2019, 30 (03) : 1111 - 1123
  • [40] Approach to Detecting Attacks against Machine Learning Systems with a Generative Adversarial Network
    Kotenko, I. V.
    Saenko, I. B.
    Lauta, O. S.
    Vasilev, N. A.
    Sadovnikov, V. E.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2024, 34 (03) : 589 - 596