Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space L0

被引:5
作者
Leont'eva, A. O. [1 ,2 ]
机构
[1] Yeltsin Ural Fed Univ, Ekaterinburg 620002, Russia
[2] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620990, Russia
关键词
trigonometric polynomial; Weyl derivative; Bernstein's inequality; the space L-0;
D O I
10.1134/S0001434618070271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A logarithmic asymptotics for the behavior with respect to n of the exact constant in Bernstein's inequality for the Weyl derivative of positive noninteger order of trigonometric polynomials of order n in the space L-0 is obtained. It turns out that the order in n of the behavior of this constant for positive noninteger orders of the derivatives has exponential growth in contrast to the power growth in the well-studied case of classical derivatives of positive integer order.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 24 条
  • [1] Arestov VV, 2014, T I MAT MEKH URO RAN, V20, P17
  • [2] Arestov V. V., 1981, Izv. Akad. Nauk. SSSR. Ser. Math., V45, P3
  • [3] Arestov V.V., 2012, CONSTRUCTIVE THEORY, P30
  • [4] Sharp integral inequalities for fractional derivatives of trigonometric polynomials
    Arestov, Vitalii V.
    Glazyrina, Polina Yu.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2012, 164 (11) : 1501 - 1512
  • [5] ARESTOV VV, 1979, DOKL AKAD NAUK SSSR+, V246, P1289
  • [6] ARESTOV VV, 1990, MAT ZAMETKI, V48, P7
  • [7] ARESTOV VV, 1994, MAT ZAMETKI, V56, P10
  • [8] Bang T, 1941, Danske Vid. Selsk. Math.- Fys. Medd., V19, P1
  • [9] Bernshtein S. N., 1952, COLLECT WORKS, p[1, 526]
  • [10] Bernstein S., 1912, Mm. Acad. Roy. Belgique, V2, P1