Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila

被引:152
作者
Garrity, Paul A. [1 ,2 ]
Goodman, Miriam B. [3 ]
Samuel, Aravinthan D. [4 ,5 ]
Sengupta, Piali [1 ,2 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Natl Ctr Behav Genom, Waltham, MA 02454 USA
[3] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
C; elegans; Drosophila; TRP; cGMP; thermosensory; thermotaxis; NEMATODE CAENORHABDITIS-ELEGANS; NUCLEOTIDE-GATED CHANNEL; CIS-REGULATORY ARCHITECTURE; DAUER PHEROMONE COMPONENT; TEMPERATURE-PREFERENCE; LIFE-SPAN; THERMOSENSORY NEURONS; OLFACTORY NEURON; REPRODUCTIVE DEVELOPMENT; THERMAL PREFERENCE;
D O I
10.1101/gad.1953710
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior.
引用
收藏
页码:2365 / 2382
页数:18
相关论文
共 144 条
[1]  
Ailion M, 2000, GENETICS, V156, P1047
[2]   Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1 [J].
Ainsley, Joshua A. ;
Kim, Myung Jun ;
Wegman, Lauren J. ;
Pettus, Janette M. ;
Johnson, Wayne A. .
DEVELOPMENTAL BIOLOGY, 2008, 322 (01) :46-55
[3]   Thermal preference of Caenorhabditis elegans:: a null model and empirical tests [J].
Anderson, Jennifer L. ;
Albergotti, Lori ;
Proulx, Stephen ;
Peden, Colin ;
Huey, Raymond B. ;
Phillips, Patrick C. .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2007, 210 (17) :3107-3116
[4]  
Antebi A, 2000, GENE DEV, V14, P1512
[5]  
Bargmann C. I., 2006, WORMBOOK, DOI [DOI 10.1895/WORMBOOK.1.123.1, 10/1895/wormbook.1.123]
[6]   THERMAL-DEPENDENCE OF LOCOMOTOR CAPACITY [J].
BENNETT, AF .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 259 (02) :R253-R258
[7]   An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior [J].
Biron, David ;
Wasserman, Sara ;
Thomas, James H. ;
Samuel, Aravinthan D. T. ;
Sengupta, Piali .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (31) :11002-11007
[8]   A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans [J].
Biron, David ;
Shibuya, Mayumi ;
Gabel, Christopher ;
Wasserman, Sara M. ;
Clark, Damon A. ;
Brown, Adam ;
Sengupta, Piali ;
Samuel, Aravinthan D. T. .
NATURE NEUROSCIENCE, 2006, 9 (12) :1499-1505
[9]   ISOLATION OF A PUTATIVE PHOSPHOLIPASE-C GENE OF DROSOPHILA, NORPA, AND ITS ROLE IN PHOTOTRANSDUCTION [J].
BLOOMQUIST, BT ;
SHORTRIDGE, RD ;
SCHNEUWLY, S ;
PERDEW, M ;
MONTELL, C ;
STELLER, H ;
RUBIN, G ;
PAK, WL .
CELL, 1988, 54 (05) :723-733
[10]  
Branson K, 2009, NAT METHODS, V6, P451, DOI [10.1038/NMETH.1328, 10.1038/nmeth.1328]