Stay on path: PCA along graph paths

被引:0
作者
Asteris, Megasthenis [1 ]
Kyrillidis, Anastasios [1 ]
Dimakis, Alexandros G. [1 ]
Yi, Han-Gyol [2 ]
Chandrasekaran, Bharath [2 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37 | 2015年 / 37卷
基金
美国国家科学基金会;
关键词
HIGH-DIMENSIONAL ANALYSIS; SEMIDEFINITE RELAXATIONS; SPARSE PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a variant of (sparse) PCA in which the set of feasible support sets is determined by a graph. In particular, we consider the following setting: given a directed acyclic graph G on p vertices corresponding to variables, the non-zero entries of the extracted principal component must coincide with vertices lying along a path in G. From a statistical perspective, information on the underlying network may potentially reduce the number of observations required to recover the population principal component. We consider the canonical estimator which optimally exploits the prior knowledge by solving a non-convex quadratic maximization on the empirical covariance. We introduce a simple network and analyze the estimator under the spiked covariance model. We show that side information potentially improves the statistical complexity. We propose two algorithms to approximate the solution of the constrained quadratic maximization, and recover a component with the desired properties. We empirically evaluate our schemes on synthetic and real datasets.
引用
收藏
页码:1728 / 1736
页数:9
相关论文
共 22 条
  • [1] High-dimensional analysis of semidefinite relaxations for sparse principal components
    Amini, Arash A.
    Wainwright, Martin J.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2454 - 2458
  • [2] HIGH-DIMENSIONAL ANALYSIS OF SEMIDEFINITE RELAXATIONS FOR SPARSE PRINCIPAL COMPONENTS
    Amini, Arash A.
    Wainwright, Martin J.
    [J]. ANNALS OF STATISTICS, 2009, 37 (5B) : 2877 - 2921
  • [3] [Anonymous], JMLR WORKSH C P 2010
  • [4] Asteris M, 2014, PR MACH LEARN RES, V32, P1728
  • [5] Baldassarre Luca., 2013, ARXIV PREPRINT ARXIV
  • [6] Model-Based Compressive Sensing
    Baraniuk, Richard G.
    Cevher, Volkan
    Duarte, Marco F.
    Hegde, Chinmay
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1982 - 2001
  • [7] Cormen T., 2001, Introduction to Algorithms
  • [8] d'Aspremont A, 2008, J MACH LEARN RES, V9, P1269
  • [9] A direct formulation for sparse PCA using semidefinite programming
    d'Aspremont, Alexandre
    El Ghaoui, Laurent
    Jordan, Michael I.
    Lanckriet, Gert R. G.
    [J]. SIAM REVIEW, 2007, 49 (03) : 434 - 448
  • [10] An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
    Desikan, Rahul S.
    Segonne, Florent
    Fischl, Bruce
    Quinn, Brian T.
    Dickerson, Bradford C.
    Blacker, Deborah
    Buckner, Randy L.
    Dale, Anders M.
    Maguire, R. Paul
    Hyman, Bradley T.
    Albert, Marilyn S.
    Killiany, Ronald J.
    [J]. NEUROIMAGE, 2006, 31 (03) : 968 - 980