Characterizations of non-normalized discrete probability distributions and their application in statistics

被引:9
作者
Betsch, Steffen [1 ]
Ebner, Bruno [1 ]
Nestmann, Franz [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Stochast, Karslruhe, BW, Germany
关键词
Discrete exponential-polynomial models; goodness-of-fit tests; negative binomial distribution; non-normalized models; Stein characterizations; OF-FIT TESTS; POISSON-DISTRIBUTION; STEINS METHOD; GOODNESS; MODELS; APPROXIMATION;
D O I
10.1214/22-EJS1983
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
From the distributional characterizations that lie at the heart of Stein's method we derive explicit formulae for the mass functions of discrete probability laws that identify those distributions. These identities are applied to develop tools for the solution of statistical problems. Our characterizations, and hence the applications built on them, do not require any knowledge about normalization constants of the probability laws. To demonstrate that our statistical methods are sound, we provide comparative simulation studies for the testing of fit to the Poisson distribution and for parameter estimation of the negative binomial family when both parameters are unknown. We also consider the problem of parameter estimation for discrete exponential-polynomial models which generally are non-normalized.
引用
收藏
页码:1303 / 1329
页数:27
相关论文
共 58 条
[1]   EXISTENCE AND UNIQUENESS OF THE MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE 2-PARAMETER NEGATIVE BINOMIAL-DISTRIBUTION [J].
ARAGON, J ;
EBERLY, D ;
EBERLY, S .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (05) :375-379
[2]  
Arras B., 2019, SPRINGERBRIEFS PROBA
[3]  
Barbour A.D., 1988, Journal of Applied Probability, V25A, P175
[4]   A GOODNESS OF FIT TEST FOR THE POISSON-DISTRIBUTION BASED ON THE EMPIRICAL GENERATING FUNCTION [J].
BARINGHAUS, L ;
HENZE, N .
STATISTICS & PROBABILITY LETTERS, 1992, 13 (04) :269-274
[5]  
Barp A, 2019, ADV NEUR IN, V32
[6]   On goodness of fit tests for the Poisson, negative binomial and binomial distributions [J].
Beltran-Beltran, J. I. ;
O'Reilly, F. J. .
STATISTICAL PAPERS, 2019, 60 (01) :1-18
[7]   Minimum Lq-distance estimators for non-normalized parametric models [J].
Betsch, Steffen ;
Ebner, Bruno ;
Klar, Bernhard .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02) :514-548
[8]   Fixed point characterizations of continuous univariate probability distributions and their applications [J].
Betsch, Steffen ;
Ebner, Bruno .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (01) :31-59
[9]  
Brown T. C., 1999, Methodol. Comput. Appl. Probab, V1, P407, DOI [10.1023/A:1010094221471, DOI 10.1023/A:1010094221471]
[10]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208