A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters

被引:11
作者
Kapetas, Panagiotis [1 ]
Woitek, Ramona [1 ,2 ]
Clauser, Paola [1 ]
Bernathova, Maria [1 ]
Pinker, Katja [1 ,3 ]
Helbich, Thomas H. [1 ]
Baltzer, Pascal A. [1 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Univ Cambridge, Cambridge Biomed Campus, Dept Radiol, Cambridge CB2 0QQ, England
[3] Mem Sloan Kettering Canc Ctr, Mol Imaging & Therapy Serv, 301 E 55th St, New York, NY 10022 USA
关键词
Breast cancer; Ultrasound; Doppler ultrasonography; Elastography; Biopsy; Imaging biomarkers; Decision tree; SHEAR-WAVE ELASTOGRAPHY; VIRTUAL TOUCH IQ; POWER DOPPLER US; DIAGNOSTIC PERFORMANCE; MASSES; MAMMOGRAPHY; SYSTEM; CANCER; MRI; ULTRASONOGRAPHY;
D O I
10.1007/s11307-018-1187-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeWe hypothesized that different quantitative ultrasound (US) parameters may be used as complementary diagnostic criteria and aimed to develop a simple classification algorithm to distinguish benign from malignant breast lesions and aid in the decision to perform biopsy or not.ProceduresOne hundred twenty-four patients, each with one biopsy-proven, sonographically evident breast lesion, were included in this prospective, IRB-approved study. Each lesion was examined with B-mode US, Color/Power Doppler US and elastography (Acoustic Radiation Force Impulse-ARFI). Different quantitative parameters were recorded for each technique, including pulsatility (PI) and resistive Index (RI) for Doppler US and lesion maximum, intermediate, and minimum shear wave velocity (SWVmax, SWVinterm, and SWVmin) as well as lesion-to-fat SWV ratio for ARFI. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of each quantitative parameter. Classification analysis was performed using the exhaustive chi-squared automatic interaction detection method. Results include the probability for malignancy for every descriptor combination in the classification algorithm.ResultsSixty-five lesions were malignant and 59 benign. Out of all quantitative indices, maximum SWV (SWVmax), and RI were included in the classification algorithm, which showed a depth of three ramifications (SWV(max)or >3.16; if SWV(max)3.16 then RI0.66, 0.66-0.77 or >0.77; if RI0.66 then SWV(max)or >2.71). The classification algorithm leads to an AUC of 0.887 (95% CI 0.818-0.937, p<0.0001), a sensitivity of 98.46% (95% CI 91.7-100%), and a specificity of 61.02% (95% CI 47.4-73.5%). By applying the proposed algorithm, a false-positive biopsy could have been avoided in 61% of the cases.ConclusionsA simple classification algorithm incorporating two quantitative US parameters (SWVmax and RI) shows a high diagnostic performance, being able to accurately differentiate benign from malignant breast lesions and lower the number of unnecessary breast biopsies in up to 60% of all cases, avoiding any subjective interpretation bias.
引用
收藏
页码:1053 / 1060
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 1980, J Roy Stat Soc: Ser C (Appl Stat), DOI [DOI 10.2307/2986296, 10.2307/2986296]
[2]   Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging-Preliminary Results [J].
Athanasiou, Alexandra ;
Tardivon, Anne ;
Tanter, Mickael ;
Sigal-Zafrani, Brigitte ;
Bercoff, Jeremy ;
Eux, Thomas Deffi ;
Gennisson, Jean-Luc ;
Fink, Mathias ;
Neuenschwander, Sylvia .
RADIOLOGY, 2010, 256 (01) :297-303
[3]   Breast elasticity: Principles, technique, results: An update and overview of commercially available software [J].
Balleyguier, C. ;
Canale, S. ;
Ben Hassen, W. ;
Vielh, P. ;
Bayou, E. H. ;
Mathieu, M. C. ;
Uzan, C. ;
Bourgier, C. ;
Dromain, C. .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (03) :427-434
[4]   A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography [J].
Baltzer, Pascal A. T. ;
Dietzel, Matthias ;
Kaiser, Werner A. .
EUROPEAN RADIOLOGY, 2013, 23 (08) :2051-2060
[5]   Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk [J].
Berg, Wendie A. ;
Zhang, Zheng ;
Lehrer, Daniel ;
Jong, Roberta A. ;
Pisano, Etta D. ;
Barr, Richard G. ;
Boehm-Velez, Marcela ;
Mahoney, Mary C. ;
Evans, W. Phil, III ;
Larsen, Linda H. ;
Morton, Marilyn J. ;
Mendelson, Ellen B. ;
Farria, Dione M. ;
Cormack, Jean B. ;
Marques, Helga S. ;
Adams, Amanda ;
Yeh, Nolin M. ;
Gabrielli, Glenna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (13) :1394-1404
[6]   Shear-wave Elastography Improves the Specificity of Breast US: The BE1 Multinational Study of 939 Masses [J].
Berg, Wendie A. ;
Cosgrove, David O. ;
Dore, Caroline J. ;
Schaefer, Fritz K. W. ;
Svensson, William E. ;
Hooley, Regina J. ;
Ohlinger, Ralf ;
Mendelson, Ellen B. ;
Balu-Maestro, Catherine ;
Locatelli, Martina ;
Tourasse, Christophe ;
Cavanaugh, Barbara C. ;
Juhan, Valerie ;
Stavros, A. Thomas ;
Tardivon, Anne ;
Gay, Joel ;
Henry, Jean-Pierre ;
Cohen-Bacrie, Claude .
RADIOLOGY, 2012, 262 (02) :435-449
[7]  
Bickel H, 2015, INVEST RADIOL, V50, P95, DOI 10.1097/RLI.0000000000000104
[8]   Intraobserver interpretation of breast ultrasonography following the BI-RADS classification [J].
Calas, M. J. G. ;
Almeida, R. M. V. R. ;
Gutfilen, B. ;
Pereira, W. C. A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2010, 74 (03) :525-528
[9]   Distinguishing Benign from Malignant Masses at Breast US: Combined US Elastography and Color Doppler US-Influence on Radiologist Accuracy [J].
Cho, Nariya ;
Jang, Mijung ;
Lyou, Chae Yeon ;
Park, Jeong Seon ;
Choi, Hye Young ;
Moon, Woo Kyung .
RADIOLOGY, 2012, 262 (01) :80-90
[10]   Shear wave elastography for breast masses is highly reproducible [J].
Cosgrove, David O. ;
Berg, Wendie A. ;
Dore, Caroline J. ;
Skyba, Danny M. ;
Henry, Jean-Pierre ;
Gay, Joel ;
Cohen-Bacrie, Claude .
EUROPEAN RADIOLOGY, 2012, 22 (05) :1023-1032