Fixed-Parameter Tractability of Graph Isomorphism in Graphs with an Excluded Minor

被引:4
作者
Lokshtanov, Daniel [1 ]
Pilipczuk, Marcin [2 ]
Pilipczuk, Michal [2 ]
Saurabh, Saket [3 ,4 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Univ Warsaw, Inst Informat, Warsaw, Poland
[3] Inst Math Sci, Chennai, Tamil Nadu, India
[4] Univ Bergen, Dept Informat, Bergen, Norway
来源
PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22) | 2022年
基金
欧洲研究理事会;
关键词
graph isomorphism; fixed-parameter tractability; excluded minor;
D O I
10.1145/3519935.3520076
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that Graph Isomorphism and Canonization in graphs excluding a fixed graph.. as a minor can be solved by an algorithm working in time f (H) center dot n(O(1)), where f is some function. In other words, we show that these problems are fixed-parameter tractable when parameterized by the size of the excluded minor, with the caveat that the bound on the running time is not necessarily computable. The underlying approach is based on decomposing the graph in a canonical way into unbreakable (intuitively, wellconnected) parts, which essentially provides a reduction to the case where the given H-minor-free graph is unbreakable itself. This is complemented by an analysis of unbreakable H-minor-free graphs, which reveals that every such graph can be canonically decomposed into a part that admits few automorphisms and a part that has bounded treewidth.
引用
收藏
页码:914 / 923
页数:10
相关论文
共 39 条
[1]  
Babai L., 1983, P 15 ANN ACM S THEOR, P171, DOI 10.1145/800061.808746
[2]   Graph Isomorphism in Quasipolynomial Time [Extended Abstract] [J].
Babai, Laszlo .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :684-697
[3]   POLYNOMIAL ALGORITHMS FOR GRAPH ISOMORPHISM AND CHROMATIC INDEX ON PARTIAL K-TREES [J].
BODLAENDER, HL .
JOURNAL OF ALGORITHMS, 1990, 11 (04) :631-643
[4]   DESIGNING FPT ALGORITHMS FOR CUT PROBLEMS USING RANDOMIZED CONTRACTIONS [J].
Chitnis, Rajesh ;
Cygan, Marek ;
Hajiaghayi, Mohammadtaghi ;
Pilipczuk, Marcin ;
Pilipczuk, Michal .
SIAM JOURNAL ON COMPUTING, 2016, 45 (04) :1171-1229
[5]  
Cygan M., 2015, Parameterized Algorithms, V4, DOI [10.1007/978-3-319-21275-3, DOI 10.1007/978-3-319-21275-315]
[6]   Randomized Contractions Meet Lean Decompositions [J].
Cygan, Marek ;
Komosa, Pawel ;
Lokshtanov, Daniel ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Saurabh, Saket ;
Wahlstrom, Magnus .
ACM TRANSACTIONS ON ALGORITHMS, 2021, 17 (01)
[7]   MINIMUM BISECTION IS FIXED-PARAMETER TRACTABLE [J].
Cygan, Marek ;
Lokshtanov, Daniel ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Saurabh, Saket .
SIAM JOURNAL ON COMPUTING, 2019, 48 (02) :417-450
[8]   Minimum Bisection is Fixed Parameter Tractable [J].
Cygan, Marek ;
Lokshtanov, Daniel ;
Pilipczuk, Marcin ;
Pilipczuk, Michal ;
Saurabh, Saket .
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, :323-332
[9]   On the excluded minor structure theorem for graphs of large tree-width [J].
Diestel, Reinhard ;
Kawarabayashi, Ken-ichi ;
Mueller, Theodor ;
Wollan, Paul .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (06) :1189-1210
[10]  
Elberfeld M, 2017, ACM T COMPUT THEORY, V9, DOI 10.1145/3132720