STOCHASTIC DE GIORGI ITERATION AND REGULARITY OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

被引:7
作者
Hsu, Elton P. [1 ]
Wang, Yu [2 ]
Wang, Zhenan [3 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60521 USA
[2] Goldman Sachs, 20 Rivercourt,Apt 1807, Jersey City, NJ 07310 USA
[3] Univ Washington, Dept Math, Padelford Hall,Off C332, Seattle, WA 98195 USA
关键词
Stochastic De Giorgi iteration; measurable coefficients;
D O I
10.1214/16-AOP1126
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under general conditions, we devise a stochastic version of De Giorgi iteration scheme for semilinear stochastic parabolic partial differential equation of the form partial derivative(t)u = div(A del u) + f(t, x, u) + g(i)(t, x, u)<(w)over dot>(i)(t) with progressively measurable diffusion coefficients. We use the scheme to show that the solution of the equation is almost surely Holder continuous in both space and time variables.
引用
收藏
页码:2855 / 2866
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1992, ENCY MATH ITS APPL, DOI DOI 10.1017/CBO9780511666223
[2]   Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation [J].
Brzezniak, Z. ;
van Neerven, J. M. A. M. ;
Veraar, M. C. ;
Weis, L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) :30-58
[3]   THE DE GIORGI METHOD FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS AND ITS APPLICATIONS TO FLUID DYNAMICS [J].
Caffarelli, Luis A. ;
Vasseur, Alexis F. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :409-427
[4]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[5]  
Carmona Rene A., 1999, Mathematical Surveys and Monographs, V64, DOI [10.1090/surv/064, DOI 10.1090/SURV/064]
[6]  
DEBUSSCHE A, ARXIV14016369
[7]  
GLATT-HOLTZ G, ARXIV13020542V1
[8]  
Krylov NV, 2010, PROBAB THEORY REL, V147, P583, DOI 10.1007/s00440-009-0217-7
[9]  
Krylov N.V., 1999, MATH SURVEYS MONOGR, V64, P185
[10]   On L(p)-theory of stochastic partial differential equations in the whole space [J].
Krylov, NV .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :313-340