First-Order Dynamical Phase Transitions

被引:121
作者
Canovi, Elena [1 ]
Werner, Philipp [2 ]
Eckstein, Martin [1 ]
机构
[1] Univ Hamburg, Max Planck Res Dept Struct Dynam, CFEL, D-22607 Hamburg, Germany
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
关键词
MEAN-FIELD THEORY; FALICOV-KIMBALL MODEL; OPTICAL LATTICE; DIMENSIONS; FERMIONS; SYSTEMS; DECAY;
D O I
10.1103/PhysRevLett.113.265702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, dynamical phase transitions have been identified based on the nonanalytic behavior of the Loschmidt echo in the thermodynamic limit [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. By introducing conditional probability amplitudes, we show how dynamical phase transitions can be further classified, both mathematically, and potentially in experiment. This leads to the definition of first-order dynamical phase transitions. Furthermore, we develop a generalized Keldysh formalism which allows us to use nonequilibrium dynamical mean-field theory to study the Loschmidt echo and dynamical phase transitions in high-dimensional, nonintegrable models. We find dynamical phase transitions of first order in the Falicov-Kimball model and in the Hubbard model.
引用
收藏
页数:5
相关论文
共 51 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[3]   Nonequilibrium dynamical mean-field theory and its applications [J].
Aoki, Hideo ;
Tsuji, Naoto ;
Eckstein, Martin ;
Kollar, Marcus ;
Oka, Takashi ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2014, 86 (02) :779-837
[4]  
Balzer K., 2013, Nonequilibrium Green's Functions Approach to Inhomogeneous Systems
[5]   Prethermalization -: art. no. 142002 [J].
Berges, J ;
Borsányi, S ;
Wetterich, C .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :142002-1
[6]   Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium [J].
Berges, Juergen ;
Rothkopf, Alexander ;
Schmidt, Jonas .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[7]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[8]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[9]   Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy [J].
Eckstein, Martin ;
Kollar, Marcus .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Interaction quench in the Hubbard model: Relaxation of the spectral function and the optical conductivity [J].
Eckstein, Martin ;
Kollar, Marcus ;
Werner, Philipp .
PHYSICAL REVIEW B, 2010, 81 (11)