Using minimum degree to bound average distance

被引:31
作者
Beezer, RA [1 ]
Riegsecker, JE [1 ]
Smith, BA [1 ]
机构
[1] Univ Puget Sound, Dept Math & Comp Sci, Tacoma, WA 98416 USA
关键词
graph; regular graph; average distance; minimum degree; Graffiti;
D O I
10.1016/S0012-365X(00)00156-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the average distance mu of a connected graph with n vertices, e edges and minimum degree d satisfies [(n+1)n(n-1)-2e/d+1]/n(n-1) This improves conjectures of the computer program Graffti (Fajtlowicz, Written on the wall, Conjectures made by program Graffiti, University of Houston, 1990), and He and Li (Math. Appl. 4 (1991) 28-34) and the results of Kouider and Winkler (J. Graph Theory 25 (1997) 95 -99). The bound is sharp since complete graphs yield equality. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 20 条
[1]   GRAPH INVARIANTS FOR FULLERENES [J].
BALABAN, AT ;
LIU, X ;
KLEIN, DJ ;
BABIC, D ;
SCHMALZ, TG ;
SEITZ, WA ;
RANDIC, M .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1995, 35 (03) :396-404
[2]  
BEEZER RA, 1989, 891 U PUG DEP MATH C
[3]  
Bermond JC, 1997, NETWORKS, V30, P187, DOI 10.1002/(SICI)1097-0037(199710)30:3<187::AID-NET4>3.0.CO
[4]  
2-H
[5]   AVERAGE DISTANCE IN GRAPHS WITH REMOVED ELEMENTS [J].
BIENSTOCK, D ;
GYORI, E .
JOURNAL OF GRAPH THEORY, 1988, 12 (03) :375-390
[6]  
Buckley F., 1981, Congr. Numer., V32, P153
[7]  
Buckley F., 1981, P 3 CARIBBEAN C COMB, P67
[8]   THE AVERAGE DISTANCE AND THE INDEPENDENCE NUMBER [J].
CHUNG, FRK .
JOURNAL OF GRAPH THEORY, 1988, 12 (02) :229-235
[9]  
Fajtlowicz S., 1990, WRITTEN WALL CONJECT
[10]  
He W., 1991, MATH APPL, V4, P28