Coupling two charge qubits via a superconducting resonator operating in the resonant and dispersive regimes

被引:3
作者
Zhang, Chengxian [1 ]
Chan, Guo Xuan [2 ,3 ]
Wang, Xin [2 ,3 ]
Xue, Zheng-Yuan [4 ,5 ,6 ,7 ]
机构
[1] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[5] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[6] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
[7] South China Normal Univ, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMICONDUCTOR;
D O I
10.1103/PhysRevA.106.032608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key challenge for semiconductor quantum-dot charge qubits is the realization of long-range qubit coupling and performing high-fidelity gates based on it. Here, we describe a different type of charge qubit formed by an electron confined in a triple-quantum-dot system, enabling single and two-qubit gates working in the dipolar and quadrupolar detuning sweet spots. We further present the form for the long-range dipolar coupling between the charge qubit and the superconducting resonator. Based on the hybrid system composed of the qubits and the resonator, we present two types of entangling gates: the dynamical iSWAP gate and holonomic entangling gate, which are operating in the dispersive and resonant regimes, respectively. We find that the fidelity for the iSWAP gate can reach a fidelity higher than 99% for the noise level typical in experiments. Meanwhile, the fidelity for the holonomic gate can surpass 98% if the anharmonicity in the resonator is large enough. Our proposal offers an alternative, useful way to build up high-fidelity quantum computation for charge qubits in the semiconductor quantum dot.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[2]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[3]   Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stuckelberg interference [J].
Cao, Gang ;
Li, Hai-Ou ;
Tu, Tao ;
Wang, Li ;
Zhou, Cheng ;
Xiao, Ming ;
Guo, Guang-Can ;
Jiang, Hong-Wen ;
Guo, Guo-Ping .
NATURE COMMUNICATIONS, 2013, 4
[4]   Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling [J].
Chen, Tao ;
Xue, Zheng-Yuan .
PHYSICAL REVIEW APPLIED, 2018, 10 (05)
[5]   Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit [J].
Chen, Zijun ;
Kelly, Julian ;
Quintana, Chris ;
Barends, R. ;
Campbell, B. ;
Chen, Yu ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. G. ;
Lucero, E. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Korotkov, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[6]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[7]   Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit [J].
Dial, O. E. ;
Shulman, M. D. ;
Harvey, S. P. ;
Bluhm, H. ;
Umansky, V. ;
Yacoby, A. .
PHYSICAL REVIEW LETTERS, 2013, 110 (14)
[8]   Entanglement Generation in Superconducting Qubits Using Holonomic Operations [J].
Egger, D. J. ;
Ganzhorn, M. ;
Salis, G. ;
Fuhrer, A. ;
Mueller, P. ;
Barkoutsos, P. Kl. ;
Moll, N. ;
Tavernelli, I. ;
Filipp, S. .
PHYSICAL REVIEW APPLIED, 2019, 11 (01)
[9]   Dressed Collective Qubit States and the Tavis-Cummings Model in Circuit QED [J].
Fink, J. M. ;
Bianchetti, R. ;
Baur, M. ;
Goeppl, M. ;
Steffen, L. ;
Filipp, S. ;
Leek, P. J. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[10]   A decoherence-free subspace in a charge quadrupole qubit [J].
Friesen, Mark ;
Ghosh, Joydip ;
Eriksson, M. A. ;
Coppersmith, S. N. .
NATURE COMMUNICATIONS, 2017, 8