Normal Families of Discrete Open Mappings with Controlled p-Module

被引:16
作者
Golberg, Anatoly [1 ]
Salimov, Ruslan [2 ]
Sevost'yanov, Evgeny [3 ]
机构
[1] Holon Inst Technol, Dept Appl Math, 52 Golomb St,POB 305, IL-5810201 Holon, Israel
[2] Natl Acad Sci Ukraine, Inst Math, 3 Tereschenkivska St, UA-01601 Kiev 4, Ukraine
[3] Zhitomir Ivan Franko State Univ, Dept Math Anal, 40 Bolshaya Berdichevskaya St, UA-10008 Zhitomir, Ukraine
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS | 2016年 / 667卷
关键词
Weighted p-module; ring Q-mappings; Lipschitz mappings; quasi-conformality in the mean; equicontinuity; normal families;
D O I
10.1090/conm/667/13533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the generic discrete open mappings in R-n under which the perturbation of extremal lengths of curve collections is controlled integrally via integral Q(x)eta(p)(vertical bar x - x(0)vertical bar)dm(x) with n - 1 < p < n, where Q is a measurable function on R-n and integral(r2)(r1) eta(r)dr >= 1 for any eta on a given interval [r(1), r(2)]. We prove that the family of all open discrete mappings of above type is normal under appropriate restrictions on the majorant Q.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 35 条
[1]  
[Anonymous], ANN U BUCHAR MATH SE
[2]  
[Anonymous], 2011, Mat. Stud.
[3]  
Bishop C J., 2003, International Journal of Mathematics and Mathematical Sciences, V22, P1397, DOI [10.1155/S0161171203110034, DOI 10.1155/S0161171203110034]
[4]  
Calderon A. P., 1951, Riv. Mat. Univ. Parma, V2, P203
[5]  
Caraman P., 1994, Rev. Roumaine Math. Pures Appl, V39, P509
[6]   Open discrete mappings having local ACLn inverses [J].
Cristea, Mihai .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) :61-90
[7]  
Federer Herbert, 1969, GRUND MATH WISS, V153
[8]  
Gehring F.W, 1971, ESSAYS THEORY LIT HI, P175
[9]  
Golberg A., 2012, ANN U BUCHAR MATH SE, V3, P1
[10]  
Golberg A., 2009, FURTHER PROGR ANAL P, P218