Fast parallel direct solvers for coarse grid problems

被引:73
作者
Tufo, HM
Fischer, PF
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
direct solver; sparse factorization; nested dissection; parallel computing; coarse grid problems;
D O I
10.1006/jpdc.2000.1676
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We have developed a fast direct solver for parallel solution of coarse grid problems, Ax = b, such as arise when domain decomposition or multigrid methods are applied to elliptic partial differential equations in d space dimensions. The approach is based on a (quasi-) sparse factorization of the inverse of A. If A is n x n and the number of processors is P, the algorithm requires O(n(gamma)Y log P) time for communication and O(n(1+gamma)/P) time for computation, where gamma drop [GRAPHICS] The method is particularly suited to leading-edge multicomputer systems having thousands of processors. It achieves minimal message startup costs and substantially reduced message volume and arithmetic complexity compared with competing methods, which require O(n log P) time for communication and O(n(1+gamma)) or O(n(2)/P) lime for computation. Timings on the Intel Paragon and ASCI-Red machines reflect these complexity estimates. (C) 2001 Academic Press.
引用
收藏
页码:151 / 177
页数:27
相关论文
共 20 条
[1]  
ALVARADO F, 1992, CS9251 U WAT RES
[2]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[3]  
BENZI M, 1999, ITERATIVE METHODS SC, V4, P167
[5]   PARALLEL COMPLEXITY OF DOMAIN DECOMPOSITION METHODS AND OPTIMAL COARSE GRID SIZE [J].
CHAN, TF ;
SHAO, JP .
PARALLEL COMPUTING, 1995, 21 (07) :1033-1049
[6]  
DRYJA M, 1990, P 3 INT S DOM DEC ME, P3
[7]  
FARHAT C, 1994, CONT MATH, V180, P401
[8]  
Fischer P., 1994, CONT MATH, V157, P313
[9]  
Fischer PF, 2000, IMA VOL MATH APPL, V120, P159
[10]  
FISCHER PF, 1996, P INT C SPECTR HIGH, P595