A Sufficient Condition for an IC-Planar Graph to be Class 1

被引:0
作者
Duan, Yuanyuan [1 ]
Song, Wenyao [1 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
基金
中国国家自然科学基金;
关键词
IC-planar graph; Edge coloring; Maximum degree; MAXIMUM DEGREE-7;
D O I
10.1007/s00373-021-02353-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two distinct crossings are independent if the end-vertices of any two pairs of crossing edges are disjoint. A graph said to be plane graph with independent crossings or IC-planar, if it can be drawn in the plane such that every two crossings are independent. In this paper, we proved that every IC-planar graph G with Delta(G) = 7 admits a proper edge-coloring with Delta(G) colors if G does not contain a 6-cycle with three chords.
引用
收藏
页码:2305 / 2313
页数:9
相关论文
共 11 条
[1]  
Albertson MO, 2008, ARS MATH CONTEMP, V1, P1
[2]   Edge coloring of graphs with small maximum degrees [J].
Li, Shuchao ;
Li, Xuechao .
DISCRETE MATHEMATICS, 2009, 309 (14) :4843-4852
[3]   The Size of Edge Chromatic Critical Graphs with Maximum Degree 6 [J].
Luo, Rong ;
Miao, Lianying ;
Zhao, Yue .
JOURNAL OF GRAPH THEORY, 2009, 60 (02) :149-171
[4]  
Murty USR., 1976, GRAPH THEORY APPL, DOI [10.1007/978-1-349-03521-2, DOI 10.1007/978-1-349-03521-2]
[5]   Planar graphs of maximum degree seven are class I [J].
Sanders, DP ;
Zhao, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :201-212
[6]  
Vizing V.G, 1965, Diskretn. Anal., V5, P9
[7]  
Vizing V.G., 1964, Diskretn. Anal., V3, P25
[8]   A sufficient condition for a plane graph with maximum degree 6 to be class 1 [J].
Wang, Yingqian ;
Xu, Lingji .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) :307-310
[9]  
Zhang, 2012, STRUCTURES COLORINGS
[10]   Every planar graph with maximum degree 7 is of class 1 [J].
Zhang, LM .
GRAPHS AND COMBINATORICS, 2000, 16 (04) :467-495