On exponential sums and group generators for elliptic curves over finite fields

被引:0
作者
Kohel, DR [1 ]
Shparlinski, IE
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Macquarie Univ, Dept Comp, N Ryde, NSW 2109, Australia
来源
ALGORITHMIC NUMBER THEORY | 2000年 / 1838卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the paper an upper bound is established for certain exponential sums, analogous to Gaussian sums, defined on the points of an elliptic curve over a prime finite held. The bound is applied to prove the existence of group generators for the set of points on an elliptic curve over F-q among certain sets of bounded size. We apply this estimate to obtain a deterministic O(q(1/2+epsilon)) algorithm for finding generators of the group in echelon form, and in particular to determine its group structure.
引用
收藏
页码:395 / 404
页数:10
相关论文
共 50 条
  • [31] On divisibility of exponential sums over finite fields of characteristic 2
    Castro, FN
    Moreno, O
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 70 - 79
  • [32] TILING, CIRCLE PACKING AND EXPONENTIAL SUMS OVER FINITE FIELDS
    Haessig, C. D.
    Iosevich, A.
    Pakianathan, J.
    Robins, S.
    Vaicunas, L.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 433 - 449
  • [33] Degree matrices and divisibility of exponential sums over finite fields
    Jianming Chen
    Wei Cao
    Archiv der Mathematik, 2010, 94 : 435 - 441
  • [34] On algebraic degrees of certain exponential sums over finite fields
    Lin, Xin
    FORUM MATHEMATICUM, 2025,
  • [35] Degree matrices and divisibility of exponential sums over finite fields
    Chen, Jianming
    Cao, Wei
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 435 - 441
  • [36] Tiling, Circle Packing and Exponential Sums over Finite Fields
    C. D. Haessig
    A. Iosevich
    J. Pakianathan
    S. Robins
    L. Vaicunas
    Analysis Mathematica, 2018, 44 : 433 - 449
  • [37] T-adic exponential sums over finite fields
    Liu, Chunlei
    Wan, Daqing
    ALGEBRA & NUMBER THEORY, 2009, 3 (05) : 489 - 509
  • [38] Cyclicity statistics for elliptic curves over finite fields
    Vladut, SG
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (01) : 13 - 25
  • [39] Digital signature with elliptic curves over the finite fields
    Alinejad, M.
    Zadeh, S. Hassan
    Biranvand, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05) : 1289 - 1301
  • [40] A CONCISE FORMULA ON ELLIPTIC CURVES OVER FINITE FIELDS
    Li, Lingyun
    Zhang, Shaohua
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 21 - 25