Learning bidirectional asymmetric similarity for collaborative filtering via matrix factorization

被引:3
|
作者
Cao, Bin [1 ]
Yang, Qiang [1 ]
Sun, Jian-Tao [2 ]
Chen, Zheng [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
关键词
Collaborative filtering; Matrix factorization; Similarity learning;
D O I
10.1007/s10618-011-0211-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Memory-based collaborative filtering (CF) aims at predicting the rating of a certain item for a particular user based on the previous ratings from similar users and/or similar items. Previous studies in finding similar users and items have several drawbacks. First, they are based on user-defined similarity measurements, such as Pearson Correlation Coefficient (PCC) or Vector Space Similarity (VSS), which are, for the most part, not adaptive and optimized for specific applications and data. Second, these similarity measures are restricted to symmetric ones such that the similarity between A and B is the same as that for B and A, although symmetry may not always hold in many real world applications. Third, they typically treat the similarity functions between users and functions between items separately. However, in reality, the similarities between users and between items are inter-related. In this paper, we propose a novel unified model for users and items, known as Similarity Learning based Collaborative Filtering (SLCF) , based on a novel adaptive bidirectional asymmetric similarity measurement. Our proposed model automatically learns asymmetric similarities between users and items at the same time through matrix factorization. Theoretical analysis shows that our model is a novel generalization of singular value decomposition (SVD). We show that, once the similarity relation is learned, it can be used flexibly in many ways for rating prediction. To take full advantage of the model, we propose several strategies to make the best use of the proposed similarity function for rating prediction. The similarity can be used either to improve the memory-based approaches or directly in a model based CF approaches. In addition, we also propose an online version of the rating prediction method to incorporate new users and new items. We evaluate SLCF using three benchmark datasets, including MovieLens, EachMovie and Netflix, through which we show that our methods can outperform many state-of-the-art baselines.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 50 条
  • [1] Learning bidirectional asymmetric similarity for collaborative filtering via matrix factorization
    Bin Cao
    Qiang Yang
    Jian-Tao Sun
    Zheng Chen
    Data Mining and Knowledge Discovery, 2011, 22 : 393 - 418
  • [2] Learning Bidirectional Similarity for Collaborative Filtering
    Cao, Bin
    Sun, Jian-Tao
    Wu, Jianmin
    Yang, Qiang
    Chen, Zheng
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART I, PROCEEDINGS, 2008, 5211 : 178 - +
  • [3] Extreme Learning Machine Combining Matrix Factorization for Collaborative Filtering
    Shang, Tianfeng
    He, Qing
    Zhuang, Fuzhen
    Shi, Zhongzhi
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [4] Quantile Matrix Factorization for Collaborative Filtering
    Karatzoglou, Alexandros
    Weimer, Markus
    E-COMMERCE AND WEB TECHNOLOGIES, 2010, 61 : 253 - +
  • [5] Privileged Matrix Factorization for Collaborative Filtering
    Du, Yali
    Xu, Chang
    Tao, Dacheng
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1610 - 1616
  • [6] Explainable Matrix Factorization for Collaborative Filtering
    Abdollahi, Behnoush
    Nasraoui, Olfa
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 5 - 6
  • [7] Applying the learning rate adaptation to the matrix factorization based collaborative filtering
    Luo, Xin
    Xia, Yunni
    Zhu, Qingsheng
    KNOWLEDGE-BASED SYSTEMS, 2013, 37 : 154 - 164
  • [8] Next-Item Recommendation via Collaborative Filtering with Bidirectional Item Similarity
    Zeng, Zijie
    Lin, Jing
    Li, Lin
    Pan, Weike
    Ming, Zhong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (01)
  • [9] Binomial Matrix Factorization for Discrete Collaborative Filtering
    Wu, Jinlong
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 1046 - 1051
  • [10] Collaborative Kalman Filtering for Dynamic Matrix Factorization
    Sun, John Z.
    Parthasarathy, Dhruv
    Varshney, Kush R.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (14) : 3499 - 3509