Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites

被引:63
|
作者
Wang, Chengjun [1 ,2 ]
Wang, Linqiang [1 ]
Liang, Weidong [1 ]
Liu, Fang [1 ]
Wang, Shuo [1 ]
Sun, Hanxue [1 ]
Zhu, Zhaoqi [1 ]
Li, An [1 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Engn, Dept Chem Engn, Lanzhou 730050, Peoples R China
[2] Northwest Minzu Univ, Coll Chem Engn, Key Lab Util Environm Friendly Composite Mat & Bi, Univ Gansu Prov, Lanzhou 730030, Peoples R China
基金
中国国家自然科学基金;
关键词
Fatty amine; All-carbon aerogel; Light-to-thermal; Phase change material; Thermal energy storage; SOLAR-ENERGY CONVERSION; GRAPHENE OXIDE; HEAT-TRANSFER; CONDUCTIVITY; STORAGE; BIOMASS; MICROCAPSULES; NANOCOMPOSITE; NANOTUBES; ADDITIVES;
D O I
10.1016/j.jcis.2021.07.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of excellent performance form-stable phase change material composites (FS-PCMCs) with enhanced photothermal conversion efficiency and high phase change latent heat is of great significance for thermal energy storage. In this work, a new type of FS-PCMCs with superior light-to-thermal conversion performance were created by impregnation of organic phase change material (1-hexadecylamine (HDA) and 1-tetradecylamine (TDA)) into the graphene aerogel (GA) and all-carbon aerogel (GCA) through a simple direct infusion. The multiwalled carbon nanotubes (MWCNTs) are wound around the inner wall of the GA layer to form a three-dimensional (3D) porous network structure to support fatty amine (FAs), thus achieving shape stability before and after phase transition. Moreover, the FSPCMCs has extremely high phase transition enthalpy (203.1-248 kJ.kg(-1)) and good recyclability. More importantly, due to the high absorbance of GCA, it can enhance its light absorption capacity and reduce thermal radiation. The light-to-thermal conversion efficiency of the FS-PCMCs is 72.36%-88.25%. Taking the improvement of the comprehensive properties of the FS-PCMCs, the results of this work may open up a way for rational design and preparation of high-performance FS-PCMCs with enhanced storage capacity and light-to-thermal conversion efficiency for the efficient utilization of solar energy. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [31] Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage
    Ramakrishnan, Sayanthan
    Wang, Xiaoming
    Sanjayan, Jay
    Wilson, John
    MATERIALS LETTERS, 2017, 192 : 88 - 91
  • [32] Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems
    Jafaripour, M.
    Sadrameli, S. M.
    Pahlavanzadeh, H.
    Mousavi, S. A. H. Seyed
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [33] Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management
    Zhao, Qihang
    He, Fangfang
    Zhang, Quanping
    Fan, Jinghui
    He, Ren
    Zhang, Kai
    Yan, Hongjian
    Yang, Wenbin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 203
  • [34] Form-Stable Phase-Change Composites Supported by a Biomass-Derived Carbon Scaffold with Multiple Energy Conversion Abilities
    Umair, Malik Muhammad
    Zhang, Yuang
    Tehrim, Aafia
    Zhang, Shufen
    Tang, Bingtao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (04) : 1393 - 1401
  • [35] Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage
    Zeng, Ju-Lan
    Gan, Juan
    Zhu, Fu-Rong
    Yu, Sai-Bo
    Xiao, Zhong-Liang
    Yan, Wen-Pei
    Zhu, Ling
    Liu, Zhen-Qiang
    Sun, Li-Xian
    Cao, Zhong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 127 : 122 - 128
  • [36] A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites
    Liu, Shang
    Han, Lipeng
    Xie, Shaolei
    Jia, Yongzhong
    Sun, Jinhe
    Jing, Yan
    Zhang, Quanyou
    SOLAR ENERGY, 2017, 143 : 22 - 30
  • [37] Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance
    Xiao, Qiangqiang
    Fan, Jiaxin
    Li, Li
    Xu, Tao
    Yuan, Wenhui
    ENERGY, 2018, 165 : 1240 - 1247
  • [38] Experimental investigation of form-stable phase change material with enhanced thermal conductivity and thermal-induced flexibility for thermal management
    Lin, Xiangwei
    Zhang, Xuelai
    Ji, Jun
    Liu, Lu
    Yang, Mai
    Zou, Lingeng
    APPLIED THERMAL ENGINEERING, 2022, 201
  • [39] Form-stable phase change materials enhanced photothermic conversion and thermal conductivity by Ag-expanded graphite
    Luo, Wenxing
    Hu, Xiaowu
    Che, Yinhui
    Zu, Shuai
    Li, Qinglin
    Jiang, Xiongxin
    Liu, Dingjun
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [40] Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage
    Tang, Bingtao
    Wang, Lingjuan
    Xu, Yuanji
    Xiu, Jinghai
    Zhang, Shufen
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 1 - 6