Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites

被引:63
|
作者
Wang, Chengjun [1 ,2 ]
Wang, Linqiang [1 ]
Liang, Weidong [1 ]
Liu, Fang [1 ]
Wang, Shuo [1 ]
Sun, Hanxue [1 ]
Zhu, Zhaoqi [1 ]
Li, An [1 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Engn, Dept Chem Engn, Lanzhou 730050, Peoples R China
[2] Northwest Minzu Univ, Coll Chem Engn, Key Lab Util Environm Friendly Composite Mat & Bi, Univ Gansu Prov, Lanzhou 730030, Peoples R China
基金
中国国家自然科学基金;
关键词
Fatty amine; All-carbon aerogel; Light-to-thermal; Phase change material; Thermal energy storage; SOLAR-ENERGY CONVERSION; GRAPHENE OXIDE; HEAT-TRANSFER; CONDUCTIVITY; STORAGE; BIOMASS; MICROCAPSULES; NANOCOMPOSITE; NANOTUBES; ADDITIVES;
D O I
10.1016/j.jcis.2021.07.066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The exploitation of excellent performance form-stable phase change material composites (FS-PCMCs) with enhanced photothermal conversion efficiency and high phase change latent heat is of great significance for thermal energy storage. In this work, a new type of FS-PCMCs with superior light-to-thermal conversion performance were created by impregnation of organic phase change material (1-hexadecylamine (HDA) and 1-tetradecylamine (TDA)) into the graphene aerogel (GA) and all-carbon aerogel (GCA) through a simple direct infusion. The multiwalled carbon nanotubes (MWCNTs) are wound around the inner wall of the GA layer to form a three-dimensional (3D) porous network structure to support fatty amine (FAs), thus achieving shape stability before and after phase transition. Moreover, the FSPCMCs has extremely high phase transition enthalpy (203.1-248 kJ.kg(-1)) and good recyclability. More importantly, due to the high absorbance of GCA, it can enhance its light absorption capacity and reduce thermal radiation. The light-to-thermal conversion efficiency of the FS-PCMCs is 72.36%-88.25%. Taking the improvement of the comprehensive properties of the FS-PCMCs, the results of this work may open up a way for rational design and preparation of high-performance FS-PCMCs with enhanced storage capacity and light-to-thermal conversion efficiency for the efficient utilization of solar energy. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [21] Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage
    Ji, Rong
    Wei, Sheng
    Xia, Yongpeng
    Huang, Chaowei
    Huang, Yue
    Zhang, Huanzhi
    Xu, Fen
    Sun, Lixian
    Lin, Xiangcheng
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [22] Preparation and characterization of a novel form-stable phase change material for thermal energy storage
    Liu, Qinfeng
    Jiang, Liang
    Zhao, Yuanyang
    Wang, Yi
    Lei, Jingxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (04) : 2945 - 2952
  • [23] Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material
    Zhang, Jiangshan
    Zhang, Xiang
    Wan, Yazhen
    Mei, Dandan
    Zhang, Bing
    SOLAR ENERGY, 2012, 86 (05) : 1142 - 1148
  • [24] Form-stable phase change material embedded with chitosan-derived carbon aerogel
    Fang, Xin
    Hao, Pin
    Song, Bo
    Tuan, Chia-Chi
    Wong, Ching-Ping
    Yu, Zi-Tao
    MATERIALS LETTERS, 2017, 195 : 79 - 81
  • [25] Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved n-Alkanes Loading Capacity and Thermal Conductivity
    Du, Xiaosheng
    Qiu, Jinghong
    Deng, Sha
    Du, Zongliang
    Cheng, Xu
    Wang, Haibo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 5695 - 5703
  • [26] Preparation and characterization of form-stable phase change material/end-of-life tires composites for thermal energy storage
    Konuklu, Yeliz
    TURKISH JOURNAL OF CHEMISTRY, 2020, 44 (02) : 421 - 434
  • [27] Enhanced thermal performance of form-stable phase change materials with organic and inorganic supporting nanofillers
    Wei-Chi Lai
    Ren-Wei Fan
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 14287 - 14295
  • [28] Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage
    Li, Xiangyu
    Chen, Huisu
    Li, Huiqiang
    Liu, Lin
    Lu, Zeyu
    Zhang, Tao
    Duan, Wen Hui
    APPLIED ENERGY, 2015, 159 : 601 - 609
  • [29] Form-stable phase change nanocomposites for thermal energy storage based on hypercrosslinked polymer nanospheres
    Fu, Xiaohui
    Liu, Yunfei
    Jiang, Xiaowei
    Wang, Qiuliang
    Luo, Yali
    Lyu, Yinong
    THERMOCHIMICA ACTA, 2018, 665 : 111 - 118
  • [30] Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials
    Li, Min
    Wang, Chengcheng
    RENEWABLE ENERGY, 2019, 141 : 1005 - 1012