Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics

被引:60
|
作者
Molak, A [1 ]
Ksepko, E [1 ]
Gruszka, I [1 ]
Ratuszna, A [1 ]
Paluch, M [1 ]
Ujma, Z [1 ]
机构
[1] Silesian Univ, August Chelkowski Inst Phys, Uniwersytecka 4, PL-40007 Katowice, Poland
关键词
ceramics; dielectric relaxation; mixed electrical conductivity; scanning electron microscopy (SEM); XRD;
D O I
10.1016/j.ssi.2005.03.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The (Na0.5Pb0.5)(Nb0.5Mn0.5)O-3 ceramics have been obtained from oxides by sintering in air, using a two-step process with precursor phase. Analysis of split lines in the XRD spectra allowed the determination of the crystallographic system of the solid solution, which consisted of one phase. The monoclinic space group P2(1)/m was identified. Cell parameters are a = 11.303(2) angstrom, b = 11.536(2) angstrom, c = 11.225(2) angstrom, beta = 88.71(2)degrees, V = 1463.4(4) angstrom(3). The high-value dielectric permittivity shows frequency dispersion in temperature characteristics. Electric modulus formalism distinguishes two relaxation processes. One is characterized with energy activation E-tau,E-A=0.36 eV and conductivity relaxation characteristic time tau(0,A) = 1 x 10(-12) s. The other with E-tau,E-B = 0.42 eV and characteristic time tau(0,B) = 2 x 10(-11) s. They were attributed to oxygen ions jumping between vacancies V-O or Mn - V-O complexes. Ionic conductivity is postulated for high temperature. Variable range hopping (vrh) small polaron conductivity manifests below 220 K. Density of states at the Fermi level, N(E-F) was estimated as 1.6 x 10(19) eV(-1) cm(-3) using the vrh model. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1439 / 1447
页数:9
相关论文
共 50 条
  • [1] XPS examination of newly obtained (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics
    Ksepko, E
    Talik, E
    Ratuszna, A
    Molak, A
    Ujma, Z
    Gruszka, I
    JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 386 (1-2) : 35 - 42
  • [2] Electronic and magnetic properties of (Bi0.5Na0.5)(Mn0.5Nb0.5)O3
    Bujakiewicz-Koronska, Renata
    Nalecz, Dawid M.
    Balanda, Maria
    Molak, Andrzej
    Ujma, Zbigniew
    PHASE TRANSITIONS, 2014, 87 (10-11) : 1096 - 1104
  • [3] Structural and Impedance Studies of Ba(Mn0.5Nb0.5)O3
    Shah, Devang D.
    Mehta, P. K.
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010, PTS A AND B, 2011, 1349 : 1041 - 1042
  • [4] Magnetoelectric properties of 0.5BiFeO3-0.5Pb(Fe0.5Nb0.5)O3 solid solution
    Stoch, Agata
    Stoch, Pawel
    CERAMICS INTERNATIONAL, 2018, 44 (12) : 14136 - 14144
  • [5] Photodielectric and Luminescence Properties of (K0.5Na0.5)NbO3-Based Ceramics Modified by (Sr0.5Sm0.5)(Mg0.5Nb0.5)O3
    Luo, Wenliu
    Yang, Ling
    Ye, Mao
    Ou, Yanghong
    Xu, Jiwen
    Xu, Huarui
    JOURNAL OF ELECTRONIC MATERIALS, 2024, 53 (02) : 930 - 944
  • [6] High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3
    Huang, Yanmin
    Shi, Danping
    Liu, Laijun
    Li, Guizhong
    Zheng, Shaoying
    Fang, Liang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 114 (03): : 891 - 896
  • [7] Tunable electrocaloric effect in (1-x)Na0.5Bi0.5TiO3-xBa(Ni0.5Nb0.5)O3 ferroelectric ceramics
    Gaur, Roopam
    Das, Dibyaranjan
    Singh, Satyendra
    CERAMICS INTERNATIONAL, 2025, 51 (07) : 9320 - 9328
  • [8] Modified (K0.5Na0.5)(Nb0.9Ta0.1)O3 ceramics with high Qm
    Lv, Y. G.
    Wang, C. L.
    Zhang, J. L.
    Zhao, M. L.
    Li, M. K.
    Wang, H. C.
    MATERIALS LETTERS, 2008, 62 (19) : 3425 - 3427
  • [9] High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3
    Yanmin Huang
    Danping Shi
    Laijun Liu
    Guizhong Li
    Shaoying Zheng
    Liang Fang
    Applied Physics A, 2014, 114 : 891 - 896
  • [10] Effects of Er-doping on the Structure and Photoelectric Properties of 0.825K0.5Na0.5NbO3-0.175Sr (Yb0.5Nb0.5) O3 Ceramics
    Guan, Yingwen
    Sun, Yabing
    Zhao, Tianhao
    Shi, Shaoyang
    Fu, Weining
    Liu, Shimin
    Wang, Hua
    Xu, Jiwen
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2022, 37 (05): : 834 - 839