Radius Problems for Some Subclasses of Analytic Functions

被引:32
作者
Kargar, R. [1 ,2 ]
Ebadian, A. [1 ]
Sokol, J. [3 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
[2] Islamic Azad Univ, Urmia Branch, Young Researchers & Elite Club, Orumiyeh, Iran
[3] Univ Rzeszow, Fac Math & Nat Sci, Ul Prof Pigonia 1, PL-35310 Rzeszow, Poland
关键词
Analytic; Univalent; Starlike function; Subordination; Radius problems; STARLIKE FUNCTIONS;
D O I
10.1007/s11785-016-0584-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we define the class M(alpha) of normalized analytic functions which satisfy the following two-sided inequality: 1 + alpha-pi/2 sin alpha < Re {zf'(z)/f(z)} < 1 + alpha/2 sin alpha vertical bar z vertical bar < 1, where pi/2 <= alpha < pi. We obtain a sufficient condition for functions to be in the class M(alpha) and solve several radius problems related to other well-known function classes.
引用
收藏
页码:1639 / 1649
页数:11
相关论文
共 7 条
[1]  
Dorff M., 2001, Complex Variables Theory Appl., V45, P263
[2]  
Duren P. L., 1983, UNIVALENT FUNCTIONS, V259
[3]   On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers [J].
Dziok, Jacek ;
Raina, Ravinder Krishna ;
Sokol, Janusz .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) :1203-1211
[4]   2ND ORDER DIFFERENTIAL INEQUALITIES IN COMPLEX PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :289-305
[6]  
Sok??l J., 1998, DEMONSTR MATH, V31, P81, DOI DOI 10.1515/dema-1998-0111
[7]  
Sokol J., 1996, Folia Sci. Univ. Tech. Resoviensis, V147, P101