共 1 条
The number of irreducible polynomials and Lyndon words with given trace
被引:19
作者:
Ruskey, F
Miers, CR
Sawada, J
机构:
[1] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8P 5C2, Canada
关键词:
irreducible polynomial;
trace;
finite field;
Lyndon word;
Mobius inversion;
D O I:
10.1137/S0895480100368050
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The trace of a degree n polynomial f(x) over GF(q) is the coefficient of x(n-1). Carlitz [ Proc. Amer. Math. Soc., 3 (1952), pp. 693-700] obtained an expression I-q(n,t) for the number of monic irreducible polynomials over GF ( q) of degree n and trace t. Using a different approach, we derive a simple explicit expression for I-q(n,t). If t > 0, I-q(n,t) = (Sigma mu (d)q(n/d))/ (qn), where the sum is over all divisors d of n which are relatively prime to q. This same approach is used to count L-q(n,t), the number of q-ary Lyndon words whose characters sum to t mod q. This number is given by L-q(n,t) = (Sigma gcd(d,q)mu (d)q(n/d))/(qn), where the sum is over all divisors d of n for which gcd(d,q)\t. Both results rely on a new form of Mobius inversion.
引用
收藏
页码:240 / 245
页数:6
相关论文