On the connection of uncertainty principles for functions on the circle and on the real line

被引:18
作者
Prestin, J [1 ]
Quak, E
Rauhut, H
Selig, K
机构
[1] Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
[2] SINTEF Appl Math, N-0314 Oslo, Norway
[3] Tech Univ Munich, Ctr Math Sci, D-80290 Munich, Germany
关键词
uncertainty principles; Poisson summation formula; time-frequency-localization; sampling;
D O I
10.1007/s00041-003-0019-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An uncertainty principle for 2pi-periodic functions and the classical Heisenberg uncertainty principle are shown to be linked by a limit process. Dependent on a parameter, a function on the real line generates periodic functions either by periodization or sampling. It is proven that under certain smoothness conditions, the periodic uncertainty products of the generated functions converge to the real-line uncertainty product of the original function if the parameter tends to infinity. These results are used to fund asymptotically optimal sequences for the periodic uncertainty principle, based either on Theta functions or trigonometric polynomials obtained by sampling B-splines.
引用
收藏
页码:387 / 409
页数:23
相关论文
共 19 条
[1]   UNCERTAINTY MEASURES AND UNCERTAINTY RELATIONS FOR ANGLE OBSERVABLES [J].
BREITENBERGER, E .
FOUNDATIONS OF PHYSICS, 1985, 15 (03) :353-364
[2]  
Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
[3]  
CHAN RH, 1997, P SOC PHOTO-OPT INS, V1362, P338
[4]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[5]   The uncertainty principle: A mathematical survey [J].
Folland, GB ;
Sitaram, A .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (03) :207-238
[6]  
GIRGENSON R, 2000, COMP ANAL APPL, V2, P159
[7]  
Hewitt E., 1975, Graduate Texts in Mathematics
[8]   Stability results for scattered-data interpolation on Euclidean spheres [J].
Narcowich, FJ ;
Sivakumar, N ;
Ward, JD .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (03) :137-163
[9]   Wavelets associated with periodic basis functions [J].
Narcowich, FJ ;
Ward, JD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (01) :40-56
[10]   PRECONDITIONERS FOR ILL-CONDITIONED TOEPLITZ SYSTEMS CONSTRUCTED FROM POSITIVE KERNELS [J].
Potts, Daniel ;
Steidl, Gabriele .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 22 (05) :1741-1761